Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum information now readable

08.04.2002


Chalmers researchers in Sweden, in an EU project involving colleagues from France, Holland, Germany, Italy and Finland, have shown that outdata from superconductor quantum computers can be read directly, even though the signal consists only of the presence or absence of two electrons, a so-called Cooper pair.



How far away are we from a functional quantum computer? Research results on quantum computers are beginning to appear. Göran Johansson at the Department of Microelectronics and Nanoscience reports that the Chalmers research team he is a member of has been able to produce readouts of superconductor quantum computers. The key to success lies in being able to meter tiny charges before they move on.

Different research teams are studying different problems involving quantum computers. Research is pursuing many paths at the same time. “But even very simple quantum computers are still at least ten years down the road,” says Göran.


The Chalmers research team, led by Per Delsing, are already the best in the world, together with their colleagues at Yale, when it comes to the rapid metering of charges with the aid of so-called monoelectron transistors. Working with theoreticians from their Chalmers colleague Göran Wendin’s team, they have now shown that it is possible to register a quantum bit rapidly enough to retrieve the information before it is destroyed by the metering itself.

Delsing’s and Wendin’s research teams are part of an EU consortium, SQUBIT, coordinated by Chalmers University of Technology in Sweden. It comprises seven world-class European laboratories and is the world leader, ahead of the U.S. and Japan, for example. The French node at CEA, Saclay, has just presented a superconductor circuit representing a quantum bit with an extremely long lifetime, a world record for this type, and has tremendous potential to expand this into a small basic quantum computer with 5-10 quantum bits within ten years.

“Chalmers has just applied for EU funding to extend our collaboration and to actually build an elementary quantum computer. What’s more, we plan to take part in an even bigger effort within the EU’s seventh framework program in quantum informatics, quantum computers, and nanotechnology,” adds Göran Wendin.

Quantum computers are a new type of computers based on the laws of physics at the atomic level, so-called quantum physics. The principle is the same as that of Schrödinger’s famous cat, which is both dead and alive until you open the lid and check. The bits in a quantum computer are both zero and one, until you read them.

In 1995 a scientist at IBM proved that a quantum computer can factor large numbers into prime numbers exponentially faster than a conventional computer. Since the security of many encryption systems relies on this factoring taking a long time, a functional quantum computer would be able to crack today’s codes in a short period of time. Other more peaceful applications of a quantum computer would be to efficiently simulate large molecules, which would be a great boon to the drug industry.

The difficulty in constructing a quantum computer lies in shielding the bits so that nothing in their environmentan unwanted electron that is oscillating a little too much, for example‘looks’ at them and thus forces them to decide whether they are zeros or ones. This is why these experiments are carried out at extremely low temperatures and using superconductive materials.

Jorun Fahle | alphagalileo

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>