Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find gaping hole in the Universe

28.08.2007
University of Minnesota astronomers have found an enormous hole in the Universe, nearly a billion light-years across, empty of both normal matter such as stars, galaxies and gas, as well as the mysterious, unseen “dark matter.” While earlier studies have shown holes, or voids, in the large-scale structure of the Universe, this new discovery dwarfs them all.

“Not only has no one ever found a void this big, but we never even expected to find one this size,” said Lawrence Rudnick of the University of Minnesota astronomy professor. Rudnick, along with grad student Shea Brown and associate professor Liliya Williams, also of the University of Minnesota, reported their findings in a paper accepted for publication in the Astrophysical Journal.

Astronomers have known for years that, on large scales, the Universe has voids largely empty of matter. However, most of these voids are much smaller than the one found by Rudnick and his colleagues. In addition, the number of discovered voids decreases as the size increases.

“What we’ve found is not normal, based on either observational studies or on computer simulations of the large-scale evolution of the Universe,” Williams said.

The astronomers drew their conclusion by studying data from the NRAO VLA Sky Survey (NVSS), a project that imaged the entire sky visible to the Very Large Array (VLA) radio telescope, part of the National Science Foundation's National Radio Astronomy Observatory (NRAO). Their study of the NVSS data showed a remarkable drop in the number of galaxies in a region of sky in the constellation Eridanus, southwest of Orion.

“We already knew there was something different about this spot in the sky,” Rudnick said. The region had been dubbed the “WMAP Cold Spot,” because it stood out in a map of the Cosmic Microwave Background (CMB) radiation made by the Wilkinson Microwave Anisotopy Probe (WMAP) satellite, launched by NASA in 2001. The CMB, faint radio waves that are the remnant radiation from the Big Bang, is the earliest “baby picture” available of the Universe. Irregularities in the CMB show structures that existed only a few hundred thousand years after the Big Bang.

The WMAP satellite measured temperature differences in the CMB that are only millionths of a degree. The cold region in Eridanus was discovered in 2004.

Astronomers wondered if the cold spot was intrinsic to the CMB, and thus indicated some structure in the very early Universe, or whether it could be caused by something more nearby through which the CMB had to pass on its way to Earth. Finding the dearth of galaxies in that region by studying NVSS data resolved that question.

“Although our surprising results need independent confirmation, the slightly lower temperature of the CMB in this region appears to be caused by a huge hole devoid of nearly all matter roughly 6-10 billion light-years from Earth,” Rudnick said.

How does a lack of matter cause a lower temperature in the Big Bang’s remnant radiation as seen from Earth"

The answer lies in dark energy, which became a dominant force in the Universe very recently, when the Universe was already three-quarters of the size it is today. Dark energy works opposite gravity and is speeding up the expansion of the Universe. Thanks to dark energy, CMB photons that pass through a large void just before arriving at Earth have less energy than those that pass through an area with a normal distribution of matter in the last leg of their journey.

In a simple expansion of the universe, without dark energy, photons approaching a large mass -- such as a supercluster of galaxies -- pick up energy from its gravity. As they pull away, the gravity saps their energy, and they wind up with the same energy as when they started.

But photons passing through matter-rich space when dark energy became dominant don't fall back to their original energy level. Dark energy counteracts the influence of gravity and so the large masses don’t sap as much energy from the photons as they pull away. Thus, these photons arrive at Earth with a slightly higher energy, or temperature, than they would in a dark energy-free Universe.

Conversely, photons passing through a large void experience a loss of energy. The acceleration of the Universe's expansion, and thus dark energy, were discovered less than a decade ago. The physical properties of dark energy are unknown, though it is by far the most abundant form of energy in the Universe today. Learning its nature is one of the most fundamental current problems in astrophysics.

David Ruth | EurekAlert!
Further information:
http://www.umn.edu
http://www.nrao.edu/pr/2007/coldspot/graphics.shtml

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>