Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edge-On!

24.08.2007
Peering at Uranus's Rings as they Swing Edge-on to Earth for the First Time Since their Discovery in 1977

As Uranus coasts through a brief window of time when its rings are edge-on to Earth - a view of the planet we get only once every 42 years - astronomers peering at the rings with ESO's Very Large Telescope and other space or ground-based telescopes are getting an unprecedented view of the fine dust in the system, free from the glare of the bright rocky rings. They may even find a new moon or two.

ESO's VLT took data at the precise moment when the rings were edge-on to Earth," said Imke de Pater, of University of California, Berkeley who coordinated the worldwide campaign. She worked with two team members observing in Chile: Daphne Stam of the Technical University Delft in the Netherlands and Markus Hartung of ESO.

The observations were done with NACO, one of the adaptive optics instruments installed at the VLT. With adaptive optics, it is possible to obtain images almost free from the blurring effect of the atmosphere. It is as if the 8.2-m telescope were observing from space.

Observations were also done with the Keck telescope in Hawaii, the Hubble Space Telescope, and at the Palomar Observatory.

"Using different telescopes around the world allows us to observe as much of the changes during the ring-plane crossing as possible: when Uranus sets as seen from the VLT, it can still be observed by the Keck," emphasised Stam.

Uranus orbits the Sun in 84 years. Twice during a Uranian year, the rings appear edge-on to Earth for a brief period. The rings were discovered in 1977, so this is the first time for a Uranus ring-crossing to be observed from Earth.

The advantage of observations at a ring-plane crossing is that it becomes possible to look at the rings from the shadowed or dark side. From that vantage point, the normally bright outer rings grow fainter because their centimetre- to metre-sized rocks obscure one another, while the dim inner rings get brighter as their material merges into a thin band along the line of sight.

Two little satellites called Cordelia and Ophelia straddle the brightest ring, the 'Epsilon Ring', and keep it in place, but it has always been assumed there must be more of these satellites that are confining the 9 other narrow rings. Normally the satellites are lost in the glare of the rings, but during these events the unique orientation makes the bright rings essentially invisible. Thus the ring plane crossing gives astronomers a rare chance, just once every 42 years, to image these tiny satellites.

Imke de Pater and colleagues made observations of the rings with the Keck II telescope on 28 May 2007. These observations are presented in an article appearing today (Thursday 23 August) in Science Express, the online edition of Science magazine. There, the astronomers report that the rings of micron-sized dust have changed significantly since the Voyager 2 spacecraft photographed the Uranus system 21 years ago. Imke de Pater will discuss these results and the new images during a talk today at the European Planetary Science Congress 2007 meeting in Potsdam, Germany.

An image of Uranus with the rings clearly visible was taken with ISAAC on ESO's VLT in 2002. It is available in ESO Press Photo 31/02.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-37-07.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>