Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AKARI’s observations of asteroid Itokawa

24.08.2007
The space-borne infrared observatory AKARI, observed asteroid Itokawa last month with its Infrared Camera. The data will be used to refine estimates of sizes of potentially hazardous asteroids in the future.

The data collected by AKARI, a JAXA mission with ESA participation, complements that from JAXA’s asteroid explorer Hayabusa in late April this year.

As AKARI observed Itokawa on 26 July it was in the constellation of Scorpius, and was about 19 magnitudes bright in visible light. The asteroid and Earth were closest to each other, at a distance of about 42 million km (for comparison, Earth is 150 million km from the Sun). Given how close it was, Itokawa moved a significant distance on the sky over the short observing time.

Using observational data of asteroids such as Itokawa in combination with data from the explorer, models that estimate asteroid sizes can be made more accurate. This is especially useful for estimating the size of potentially hazardous asteroids which may be discovered in the future.

Before Hayabusa arrived at Itokawa, many observations to determine the asteroid's approximate size had already been attempted. Among the many different methods of measurement, the most accurate estimate was achieved by mid-infrared observations.

Motion of Itokawa

With AKARI, it was possible to observe Itokawa at several different wavelengths in the mid-infrared range, obtaining a much more comprehensive set of data. This data is very important, not only for the study of the asteroid’s infrared properties, but also for use as a template and source of comparison with other asteroids, to improve the estimates of their sizes.

Most sunlight falling on Itokawa is absorbed, heating the asteroid up. It then re-emits this energy as bright infrared light, which was in turn observed by AKARI. Only a small fraction of the incident sunlight is reflected from Itokawa, making it a very faint object when observed in visible light. It is very hard to observe using telescopes of sizes similar to that of AKARI from ground.

Positions of Itokawa and Earth

Asteroid size is one of the most sought-after pieces of information. For asteroids that are not explored directly, their sizes can be estimated based on various observations from Earth. The temperature of asteroids is determined by the balance between the energy input from incident sunlight, and the output, emitted as infrared radiation.

Existing computer models estimate the temperature distribution in asteroids by considering their shape, rotational motion, and surface conditions.

Observational data in the mid-infrared gives information on the infrared light emitted by the asteroid. Asteroid size can be derived by comparing observational data in the mid-infrared, with that expected from the calculations of the model. The models can further be improved by using the infrared observational data of well-studied asteroids, such as Itokawa.

AKARI has also made observations of possible candidates for future asteroid exploration. It is expected that this detailed information will help greatly further our knowledge of these interesting relics of our Solar System.

Karina De Castris | alfa
Further information:
http://www.esa.int/esaSC/SEMJEVWZK5F_index_0.html

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>