Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northeastern U researchers answer longstanding question in the field of condensed matter physics

08.08.2007
Paper 'Flow Diagram of the Metal-insulator Transition in Two'

Northeastern University Physics professor Sergey V. Kravchenko along with colleagues Svetlana Anissimova (Northeastern University), A Punnoose (City College if the City University of New York), AM Finkelstein (Weizmann Institute of Science, Israel) and TM Klapwijk (Delft University of Technology, Netherlands), has published an important new paper in the August issue of Nature Physics which answers a long standing question in the field of condensed matter physics.

The discovery of the metal-insulator transition (MIT) in two-dimensional electron systems by Kravchenko and colleagues in 1994 challenged the veracity of one of the most influential conjectures in the physics of disordered electrons by Abrahams, Anderson, Licciardello and Ramakrishnan (1979) which stated that “in two dimensions, there is no true metallic behavior.”

However, the 1979 theory did not account for interactions between electrons. In this new paper, Kravchenko and colleagues investigate the interplay between the electron-electron interactions and disorder near the MIT using simultaneous measurements of electrical resistivity and magnetoconductance.

The researchers show that both the resistance and interaction amplitude exhibit a fan-like spread as the MIT is crossed. From this data, the researchers have constructed a resistance-interaction flow diagram of the MIT that clearly reveals a quantum critical point, as predicted by the recent two-parameter scaling theory by two of the authors (A. Punnoose and A.M. Finkelstein). The metallic side of this diagram is accurately described by the renormalization-group theory without any fitting parameters. In particular, the metallic temperature dependence of the resistance sets in when the interaction amplitude reaches a value in remarkable agreement with the one predicted by theory.

“To the best of our knowledge, this is the first observation of the temperature dependence of the strength of the electron-electron interactions,” said Kravchenko. “We found that the interaction grows in the metallic phase as the temperature is reduced and is suppressed in the insulating phase.”

“Whether or not the electrons can conduct in two dimensions at very low temperatures is a question that has been hotly debated for more than a decade,” said Kravchenko. “We now know that, because of the interactions between them, they can, and we have a theory that quantitatively and qualitatively explains things.”

An advance copy of the paper is available online at: http://www.nature.com/nphys/index.html

About Nature Physics:

Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features. The impact factor for Nature Physics is 12.040, according to the ISI Journal Citation Reports. This places Nature Physics first among all primary research journals in physics.

The journal features two primary research paper formats: Letters and Articles. In addition to publishing primary research, Nature Physics serves as a central source for top-quality information for the physics community through Review Articles, News & Views, Research Highlights on important developments published throughout the physics literature, Commentaries, Book Reviews, and Correspondence.

About Northeastern:

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Laura Shea Souza | EurekAlert!
Further information:
http://www.nature.com/nphys/index.html
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

How skin cells protect themselves against stress

12.12.2018 | Life Sciences

Copper compound as promising quantum computing unit

12.12.2018 | Life Sciences

New approach towards an improved treatment of anxiety disorders

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>