Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new project to test a pioneering method to advance technology

28.03.2002


Technological advances take place all the time – driven by need. But can these advances be speeded up in quantum leaps? The European Space Agency thinks they can, and is launching a pioneering project to test this.



The European Space Agency has launched a project to test whether technological advances can be speeded up in quantum leaps. The Star Tiger project will gather together a small team of enthusiastic scientists and engineers with a range of expertise from around Europe, put them together for four months at a location with state-of-the-art facilities, remove distractions and administrative burdens, and give them a technically challenging project.

"With Star Tiger we want to reduce dramatically the turn-around time for state-of-the art technology developments," says Niels Jensen, ESA`s Head of Technology Programme Department. "A small group of researcher and experts will be given the possibility to concentrate just on their R&D. They will be able to try-out new ideas on the spot, select or eliminate new paths as soon as identified and make prototypes on the fly. By creating a highly motivated team of researchers and experts and let them work together in the same labs with all needed for an intense period we will get an extra synergy not known in the conventional world of R&D, and a prospective of a key scientific breakthrough in a strategically important technological area."


The Star Tiger team will be recruited from across Europe and members will have the opportunity to work in a small group of like-minded scientists and engineers, and endeavour to produce a terahertz imager operating in two frequencies, 250 GHz and 300 GHz. The team has been given the specific task of imaging a human hand in more or less real time. The use of two frequencies provides a means for contrasting between materials with different transmission and reflection properties of skin and tissue, effectively creating two colours.

“Forget Big Brother and Castaway, where people were thrown together with no goal other than to entertain the public through TV programmes. In this project we’ll be handpicking people for their expertise and ability to work in a team – to work together to push technology to its limit”, explained Dr Chris Mann, the project manager at CLRC Rutherford Appleton Laboratory in Oxfordshire, UK, where the team will be located.

The imager will provide a view port into presently hidden information embedded in the natural terahertz radio waves emitted by pretty much everything, including people. Space applications presently include astronomy, atmospheric physics, and Earth and environment monitoring. With the use of MEMS (MicroElectroMechanical Systems) and Photonic Band Gap technology the Star Tiger imager will be low powered, small and compact and opening up the possibility of planetary and micro satellite missions.

“We’re asking the team to produce a low cost, mass and volume colour terahertz imaging system, which would be made using a combination of micro machining and lithography-based manufacturing techniques”, explained Peter de Maagt, the project manager at ESA. “The over-riding limiting factors for present imagers are their complexity, combined with their size, mass and cost. Star Tiger’s requirement of colour imaging makes this challenge truly demanding”.

Non-space activities will also benefit from this technology, including industrial process control and medical diagnostics – terahertz radio waves are able to penetrate the uppermost layers of skin making the early detection of skin cancers an exciting and real possibility. Security surveillance is another area that may benefit. By observing terahertz radio waves it is possible to see through many materials such as clothing, and obtain the equivalent of an X-ray image without the use of X-rays. To this end Star Tiger have sought support from Dr Roger Appleby of Qinetiq who heads the team currently developing a real time millimetre wave imager.

“Qinetiq obtained the first video-rate millimetre wave images which they unveiled at a recent conference. Their images inspired me to bring this technology into the terahertz range where theoretically higher resolution and smaller systems can be achieved. The technical tasks, however, are daunting. Star Tiger was the only way in which Peter and I could see it happening soon”, commented Chris Mann. “In order for Star Tiger to succeed it will need to demonstrate that a small focused team can bring about dramatic technical advances in a short period”. To provide the maximum chance of success they have at their disposal the full support and resources of RAL’s Space Science and Technology Department, the Central Microstructure Facility and the Millimetre Wave Technology Group.

"The Star Tiger project promises to be extremely exciting - and everyone in my department at RAL will be watching it with great interest. As well as being the largest space science department in Europe, we have some of the most highly regarded scientists and engineers, and many of them will be providing support and help to the Star Tiger team during their stay. The team will also have access to some top class laboratories. With the right team recruited, and the backing from my department, this project just has to succeed!." said Professor Richard Holdaway, Director Space Science and Technology at the Rutherford Appleton Laboratory.

Star Tiger starts at the beginning of June 2002 and will run for 4 months. Scientists and engineers wishing to take part should apply online at the Star Tiger website www.startiger.org.

Jacky Hutchinson | alphagalileo
Further information:
http://www.startiger.org

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
11.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
11.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Self-driving microrobots

11.12.2019 | Materials Sciences

Innovation boost for “learning factory”: European research project “SemI40” generates path-breaking findings

11.12.2019 | Information Technology

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>