Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new project to test a pioneering method to advance technology

28.03.2002


Technological advances take place all the time – driven by need. But can these advances be speeded up in quantum leaps? The European Space Agency thinks they can, and is launching a pioneering project to test this.



The European Space Agency has launched a project to test whether technological advances can be speeded up in quantum leaps. The Star Tiger project will gather together a small team of enthusiastic scientists and engineers with a range of expertise from around Europe, put them together for four months at a location with state-of-the-art facilities, remove distractions and administrative burdens, and give them a technically challenging project.

"With Star Tiger we want to reduce dramatically the turn-around time for state-of-the art technology developments," says Niels Jensen, ESA`s Head of Technology Programme Department. "A small group of researcher and experts will be given the possibility to concentrate just on their R&D. They will be able to try-out new ideas on the spot, select or eliminate new paths as soon as identified and make prototypes on the fly. By creating a highly motivated team of researchers and experts and let them work together in the same labs with all needed for an intense period we will get an extra synergy not known in the conventional world of R&D, and a prospective of a key scientific breakthrough in a strategically important technological area."


The Star Tiger team will be recruited from across Europe and members will have the opportunity to work in a small group of like-minded scientists and engineers, and endeavour to produce a terahertz imager operating in two frequencies, 250 GHz and 300 GHz. The team has been given the specific task of imaging a human hand in more or less real time. The use of two frequencies provides a means for contrasting between materials with different transmission and reflection properties of skin and tissue, effectively creating two colours.

“Forget Big Brother and Castaway, where people were thrown together with no goal other than to entertain the public through TV programmes. In this project we’ll be handpicking people for their expertise and ability to work in a team – to work together to push technology to its limit”, explained Dr Chris Mann, the project manager at CLRC Rutherford Appleton Laboratory in Oxfordshire, UK, where the team will be located.

The imager will provide a view port into presently hidden information embedded in the natural terahertz radio waves emitted by pretty much everything, including people. Space applications presently include astronomy, atmospheric physics, and Earth and environment monitoring. With the use of MEMS (MicroElectroMechanical Systems) and Photonic Band Gap technology the Star Tiger imager will be low powered, small and compact and opening up the possibility of planetary and micro satellite missions.

“We’re asking the team to produce a low cost, mass and volume colour terahertz imaging system, which would be made using a combination of micro machining and lithography-based manufacturing techniques”, explained Peter de Maagt, the project manager at ESA. “The over-riding limiting factors for present imagers are their complexity, combined with their size, mass and cost. Star Tiger’s requirement of colour imaging makes this challenge truly demanding”.

Non-space activities will also benefit from this technology, including industrial process control and medical diagnostics – terahertz radio waves are able to penetrate the uppermost layers of skin making the early detection of skin cancers an exciting and real possibility. Security surveillance is another area that may benefit. By observing terahertz radio waves it is possible to see through many materials such as clothing, and obtain the equivalent of an X-ray image without the use of X-rays. To this end Star Tiger have sought support from Dr Roger Appleby of Qinetiq who heads the team currently developing a real time millimetre wave imager.

“Qinetiq obtained the first video-rate millimetre wave images which they unveiled at a recent conference. Their images inspired me to bring this technology into the terahertz range where theoretically higher resolution and smaller systems can be achieved. The technical tasks, however, are daunting. Star Tiger was the only way in which Peter and I could see it happening soon”, commented Chris Mann. “In order for Star Tiger to succeed it will need to demonstrate that a small focused team can bring about dramatic technical advances in a short period”. To provide the maximum chance of success they have at their disposal the full support and resources of RAL’s Space Science and Technology Department, the Central Microstructure Facility and the Millimetre Wave Technology Group.

"The Star Tiger project promises to be extremely exciting - and everyone in my department at RAL will be watching it with great interest. As well as being the largest space science department in Europe, we have some of the most highly regarded scientists and engineers, and many of them will be providing support and help to the Star Tiger team during their stay. The team will also have access to some top class laboratories. With the right team recruited, and the backing from my department, this project just has to succeed!." said Professor Richard Holdaway, Director Space Science and Technology at the Rutherford Appleton Laboratory.

Star Tiger starts at the beginning of June 2002 and will run for 4 months. Scientists and engineers wishing to take part should apply online at the Star Tiger website www.startiger.org.

Jacky Hutchinson | alphagalileo
Further information:
http://www.startiger.org

More articles from Physics and Astronomy:

nachricht The measurements of the expansion of the universe don't add up
19.11.2019 | FECYT - Spanish Foundation for Science and Technology

nachricht How LISA pathfinder detected dozens of 'comet crumbs'
19.11.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Structure of a mitochondrial ATP synthase

19.11.2019 | Life Sciences

The measurements of the expansion of the universe don't add up

19.11.2019 | Physics and Astronomy

Ayahuasca compound changes brainwaves to vivid 'waking-dream' state

19.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>