Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New oxidation methods streamline synthesis of important compounds

03.08.2007
One of the fundamental challenges facing organic synthesis in the 21st century is the need to significantly increase the efficiency with which carbon frameworks can be constructed and functionalized.
Chemists at the University of Illinois are helping to meet this challenge by developing a class of carbon-hydrogen catalysts that are highly selective, reactive and tolerant of other functionality.

The catalysts also offer a new strategy for streamlining the synthesis of important compounds, including drugs and pharmaceuticals, by avoiding the functional group manipulations required for working with oxidized materials.

"We are creating a toolbox of catalytic reactions that allow us to go directly from a carbon-hydrogen bond to a carbon-oxygen bond or to a carbon-nitrogen bond," said M. Christina White, a professor of chemistry at Illinois. "By offering fewer steps, fewer functional group manipulations and higher yields, this toolbox will change the way chemists make molecules."

Currently, chemists must make molecules by beginning with something that is already oxidized. But, having to start with that functionality means it must be carried - and protected - throughout the entire synthetic sequence. And that costs reagents, time, money and manpower, in addition to being inherently inefficient.

"Unlike standard synthetic methods, we don't have to carry the functionality throughout the entire sequence," White said. "Instead, we carry latent functionality as a carbon-hydrogen bond. Then, at a late stage in the synthesis, we remove the hydrogen and replace it with oxygen or nitrogen - right where we need it for the next chemical reaction."

In the June 13 issue of the Journal of the American Chemical Society, White and graduate student Kenneth J. Fraunhoffer describe the catalytic pathway they used to synthesize a derivative of the chemotherapeutic reagent acosamine. They were able to eliminate all of the functional group manipulations and cut by one-half the number of steps required, while maintaining the same purity and yield.

White has also used her catalyst to streamline the synthesis of a peptidase inhibitor drug candidate, a nucleotide-sugar L-galactose, and is currently working on the antibiotic erythromycin A.

White's research is funded by the Henry Dreyfus Foundation, the A.P.
Sloan Foundation, the University of Illinois, Merck Research Laboratories, the National Institutes of Health and the National Science Foundation.

Editor's note: To reach M. Christina White, call 217-333-6173;
e-mail: white@scs.uiuc.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>