Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU Professor Works With International Researchers to Make Quantum Physics Discovery

31.07.2007
John F. DiTusa, professor of physics and astronomy at LSU, and his international colleagues have discovered an unusual magnetic material that behaves very differently from the average refrigerator magnet.

He recently co-authored an article with researchers from around the world, titled, “Mesoscopic Phase Coherence in a Quantum Spin Fluid.” Their findings will be published in the July 26 edition of the prestigious Science magazine.

The results of their research have strong implications for the design of devices and materials for quantum information processing.

The group’s main goal was to demonstrate string order – also called quantum phase coherence – and to determine the factors affecting the ability to maintain this property over a finite distance. In order to investigate this, DiTusa, together with an international team of researchers, looked at a quantum spin liquid, a system where electron spins are coupled, but point in random directions. These spins can be thought of as atomic-sized bar magnets that point in random arrangements, which is in direct contrast to the behavior of household magnets, where the spins are mostly aligned. The material in which they discovered the quantum spin liquid is composed of chains of nickel-oxygen-nickel atoms.

The group found that the string order was maintained for relatively long distances, nearly 30 nanometers, or 100 times the distance between nickel atoms in the solid state, at temperatures close to absolute zero.

“I like to think of this novel state of matter as an orchestra without a conductor, each musician playing whatever comes to mind,” said DiTusa. “Though one trumpet player likes to play Jimmie Hendrix and an oboe player likes to play Bach, a miraculous occurrence takes place and, without realizing it, the entire room of musicians becomes locked into playing a Brahms symphony.”

In this case, DiTusa contends, the whole orchestra is acting as a single coherent entity, even though they are playing different parts of a nonexistent score. This coherence has a length scale of the size of the concert hall and lasts a time determined by the length of the symphony.

“In our nickel oxide magnet, although the individual nickel atoms don’t have spins that point all in the same direction, or even form a regularly repeating pattern, they all hang together to make a beautiful, coherent symphony,” he said.

Collaborators on this research include: Guangyong Xu of Johns Hopkins University and Brookhaven National Laboratory; Collin L. Broholm, Ying Chen and Michel Kenzelmann of Johns Hopkins University and the National Institute of Standards and Technology Center for Neutron Research; Yeong-Ah Soh of Dartmouth College; Gabriel Aeppli of the London Centre for Nanotechnology and University College of London; Christopher D. Frost from the ISIS Facility, Rutherford Appleton Laboratory, U.K.; Toshimitsu Ito and Kunihiko Oka of the National Institute of Advanced Industrial Science and Technology, or AIST, in Japan; and Hidenori Takagi, also from AIST and the University of Tokyo.

For more information, contact DiTusa at ditusa@phys.lsu.edu or 225-578-2606.

John F. DiTusa | EurekAlert!
Further information:
http://www.phys.lsu.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>