Graphene sniffs out dangerous molecules

The development of graphene-based devices – which could eventually be used to detect hidden explosives at airports and deadly carbon monoxide in homes – is reported by Dr Kostya Novoselov and Professor Andre Geim in the latest issue of Nature Materials.

Three years ago, Manchester scientists discovered graphene – a one-atom-thick gauze of carbon atoms resembling chicken wire. This incredible new material has rapidly become one of the hottest topics in materials science and solid-state physics.

Now the same Manchester team has found that graphene is extremely sensitive to the presence of minute amounts of gases such as alcohol vapour or extremely toxic carbon monoxide.

They say this sensitivity was unexpected and seems to contradict to the common belief that graphene is extremely chemically inert.

The researchers have shown that gas molecules gently attach themselves to graphene without disrupting its chicken wire structure. They only add or take away electrons from graphene, which results in notable changes in its electrical conductance.

Writing in Nature Materials, researchers from the Manchester Centre for Mesoscience and Nanotechnology, say they have demonstrated that graphene-based sensors allow individual events to be registered when gas molecules attach to the surface.

Dr Novoselov, from The School of Physics and Astronomy, says this is clearly observed in changes of the electrical resistance of graphene, which occur as molecules are attaching one by one to its surface.

“This level of sensitivity is typically millions of times higher than for any other gas detector demonstrated before,” says Novoselov. “Graphene sensors are as sensitive as sensors can be in principle.”

Novoselov and Geim believe graphene-based gas detectors could be readily commercially produced using epitaxial graphene wafers, grown in many laboratories around the world and already good enough for this application.

But they stress that further research is needed to make such detectors sensitive to individual gases.

“At present you could not sniff out a flammable substance hidden in luggage because an increase in air humidity would give false readings,” says Geim. “But this is exactly the same problem that all solid-state gas detectors have encountered, and it can be successfully solved through various detection schemes including filters and analysis of a temperature response. We see no reason why the same cannot be done successfully with graphene.

“This is only the first step on the route to commercial graphene-based sensors but the road ahead is clear,” adds Geim. “Once again, graphene has proved itself to be a material with truly remarkable qualities, allowing observations that no other known material could.”

Researchers from the Institute for Microelectronics Technology in Russia and the Institute for Molecules and Materials at the University of Nijmegen in the Netherlands, also collaborated on the paper.

Media Contact

Jon Keighren alfa

More Information:

http://www.manchester.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors