Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter`s Electric Aurora

26.03.2002


The planet Jupiter has spectacular rings of auroras around each pole but until now scientists have not been able to explain how they form. All auroras are caused by energetic charged particles crashing into the top of the atmosphere and making it glow. In the Earth’s auroras, these particles come from the Sun in a flow of charged particles known as the solar wind. But this can’t account for Jupiter’s auroras because the solar wind does not reach to the region where the brightest are found. Space physicists from the University of Leicester have now proposed a new theory of how Jupiter’s auroras are formed.



An enormous disk of plasma gas rotates around Jupiter, flowing outwards from the moon Io. They believe that a large-scale electric current system (stream of charged particles) flows between the planet’s upper atmosphere and this disk of gas. They have also calculated that in order for such large currents to flow between the atmosphere and the disk, electrons must be strongly accelerated between these regions, causing the bright ring of auroras around each pole when they hit the top of the atmosphere and make it glow.

Professor Stan Cowley, of the University of Leicester said: "The force associated with this electric current causes the plasma gas to spin at the same rate as the planet as it flows outwards. Our calculations suggest that the total current in this giant circuit is 100 million amps. The power transferred from the atmosphere to the plasma disk is about a thousand million megawatts or about 20,000 times the peak electricity demand in the UK!"


The brightness of the aurora depends upon the intensity of the electron beams that hit the top of the atmosphere. Scientists had previously developed a number of theories about how the auroras are formed, but they underestimated this brightness by factors of between a hundred and a thousand compared to the measurements taken!

Julia Maddock | alphagalileo
Further information:
http://pparc.ac.uk

More articles from Physics and Astronomy:

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

nachricht Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>