Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New phenomenon in physics discovered on illumination of metal surfaces

12.07.2007
Scientific research at the Centre of the Physics of Materials, a mixed venture of the Higher Council for Scientific Research (CSIC) and the University of the Basque Country (UPV/EHU) in Donostia-San Sebastian, has enabled the discovery of a new physical phenomenon that affects the surfaces of illuminated metals. The conclusions of the research have been published in the journal Nature.

The discovery, known as acoustic plasmon, could have applications in the design of ultra-high velocity electronic devices for data storage, for use in nano-optics or biomaterials, as well as in the creation of new materials for medical applications.

A plasmon is a charged wave formed by the group excitation of electrons. An acoustic plasmon is a type of surface plasmon produced by the interaction between light and metal surfaces.

The main difference between common surface plasmons – known for half a century – and the new, acoustic plasmons is that each of these is created with a different amount of energy. The acoustic plasmon multiplies its possible applications on using less energy.

In concrete, while common surface plasmons need 10 electron-volts of energy to become excited – a relatively high value for many technological applications – the acoustic plasmon can be triggered into an excited state with very low levels of energy input – less than 1 electron-volt.

One of the authors of the research, Eugene Chulkov, who works at the Centre of Materials Physics, explains the find as follows: "When light falls on a metal surface, the metal electrons interact with the electromagnetic field of light and create other waves, called plasmons".

Chulkov provides a more graphic example in order to understand the phenomenom: "The charged waves that produces the light fall on the metallic surface in the same way as ripples are made by a stone thrown into a pond ".

Chulkov admits that it may seem strange to use metallic structures to transmit light, as it is well known that light quickly attenuates on passing through a metal. "Nevertheless", he adds, "the situation is different if one thinks of surface plasmons, given that the waves may travel several centimetres over a surface before losing their energy, a feature that could be useful in biomedicine and nanotechnology".

Nanometric applications

Research into this phenomenon could be useful in the design of metallic surfaces on a nanometric scale and on which the properties of the plasmons propagated by these surfaces, themselves, may be modified or manipulated.

This work has been led by physicist Pedro Miguel Etxenike, President of the Donostia International Physics Center, in collaboration with scientists from the CSIC, the UPV/EHU, the CIC Nanogune and the Universidad Autónoma of Madrid.

The research team has suggested baptizing the new phenomenon “the Silkin Plasmon” in recognition of the sterling work undertaken by scientist Slava Silkin, who works at the Donostia International Physics Center.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1393&hizk=I

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>