Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF helps Europe play lead role in new age of astronomical discovery

04.07.2007
Astronomy is entering a new golden age of discovery led by breakthroughs in telescopes and instruments making them capable of observing distant events early in the life of the universe. There is now great optimism that one of the fundamental questions of cosmology, the origin of galaxies, will be resolved within the next decade or sooner. But the technology involved is expensive, for instruments have to be highly sensitive and some of the observation needs to take place from space beyond the interference of the earth’s atmosphere, so an international effort is involved.

Europe is playing a key role in this global programme with three new instruments, including the €1 billion Herchel Space Observatory (HSO), and the European Science Foundation (ESF) has been helping to coordinate the effort by bringing many of the principle users of these facilities together at an international conference. Delegates included leading specialists in all aspects of galaxy and star formation.

Galaxies are formed when areas of dust and gas collapse under gravity, forming clumps within which densities become sufficient to trigger the nuclear fusion required for star formation. But the devil is in the detail, and this has been obscured from optical telescopes by clouds of dust that absorb visible light. However the dust re-emits this visible light absorbed from galaxies at longer wavelengths, and the latest telescopes are now able to detect this at sufficient sensitivity to unravel the processes being observed, as Eelco van Kampen, chair of the ESF Research Conference The Origin of Galaxies: Exploring Galaxy Evolution with the New Generation of Infrared-Millimeter Facilities, pointed out. “The main reason for a new golden age is the sheer number of new instruments that will become available over the next few years, literally opening up the universe in the far-infrared to millimeter wavelengths,” said van Kampen.

It is not just that galaxy formation can now be observed indirectly via the radiation emitted from the dust that obscures a direct view, but the new telescopes are also able to span a much broader spectrum of wavelengths. This is crucial for understanding what is happening, because many processes, and also individual chemical elements, only reveal themselves via the radiation they emit across multiple wavelengths, rather than their intensity at a particular point of the spectrum, or single “colour”. “The main gain is that the whole 'spectral energy distribution' (SED for short) can be mapped for each source, which means that one does not only measure total luminosity, but also 'colours' and emission from specific molecules,” said van Kampen. “From the SED one can derive many properties of the sources, including temperatures and composition.”

Although there is great confidence that dramatic progress will be made, there is uncertainty over the exact nature of the discoveries to come, creating eager anticipation among astronomers. “There will be many surprises, as this is still a relatively uncharted wavelength range,” said van Kampen. “It is hard to predict whether surprises will be on the same scale as those in gamma-rays, where many short-lived bursts appeared quite unexpectedly, but there is great potential for the unexpected!” Gamma ray bursts lasting a split second are caused by the most powerful explosions known, and provided evidence of black holes – objects whose gravity is so intense that even light does not travel fast enough to escape.

For European researchers, there is an additional aspect to the challenge – all the observations from the crucial HSO telescope have to be made within about three years before the equipment runs out of its vital helium cooling fluid, which cannot practically be replenished. The telescope has to be kept cool to avoid emitting infra red radiation from its own fabric, which would swamp the faint signals from distant dust clouds. “The Herschel Space Telescope has to be cooled significantly to reduce background noise, and for this purpose will be housed in a superfluid helium cryostat,” said van Kampen. “The need for cooling means that the telescope lifetime is limited by its helium supply. We are promised at least 3 years of routine operations, but this could be somewhat longer if we are lucky.”

Apart from the HSO, Europe is contributing to two other instruments to the international galaxy observing effort: SCUBA-2, which is a wide field camera for the James Clerk Maxwell Telescope (JCMT) on Mauna Kea, Hawaii, and the Atacama Large Millimetre Array (ALMA) 16400 feet up in the Chilean Andes.

The conference, which was one of the series of research conferences organised by the ESF Research Conferences Scheme, was held at Universitätszentrum Obergurgl near Innsbruck in Austria, from 24-29 March 2007. This event was organised by the ESF in partnership with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

The European Science Foundation is based in Strasbourg, France, see www.esf.org The ESF is an association of 75 member organisations from 30 European countries. Since its inception in 1974, it has co-ordinated a wide range of pan-European scientific initiatives.

More information: www.esf.org/activities/esf-conferences/details/confdetail224.html?conf=224

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/esf-conferences/details/confdetail224.html?conf=224

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>