Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It is easy to find a needle in a haystack!

02.07.2007
Researchers from the town of Zelenograd (situated near Moscow) have developed an efficient and convenient device for detecting metal objects.

It is distinguished from its analogues because it is a highly sensitive method that allows you to detect a razor blade, a coin, or even a small pin in the lapel of your jacket. This magnetosensitive sensor system even enables you to see the contours of objects and identify whether it is made of ferrous or non-ferrous metal.

The device is based on a grid of magnetosensitive sensors which were developed (along with the device itself) by specialists of the Research and Production Complex “Technology Center” of the Moscow Institute of Electronic Technology (MIET). As the developers are taking out a patent for the device and the sensors, they do not disclose their design yet. However, the subject matter is explained as follows.

The “heart” of each sensor is a superfine film of iron, nickel and cobalt alloy, 100 angstroem units thick (one hundredth of a micron). The film structure is heterogeneous with microcrystals forming differently oriented domains in it. The film pattern formed by microcrystal strokes is determined by the parameters of the magnetic field (magnetic intensity and direction of lines of force).

If magnetic field intensity changes, the microcrystals' orientation also changes, which affects the electrical resistance of the film. The object's own magnetic field or degree of distortion of the terrestrial magnetic field, is then recorded and measured. Nonferromagnetic metal objects are detected by the weak magnetism emitted using sensors surrounded by a coil of electromagnetic radiation which has a known emissive power and frequency.

The device can distinguish between metal objects by examining the area at a certain distance, for example, 10 centimeters, and filtering out other objects using a central processor. This processor analyzes data and compares it with reference objects. The object is displayed on an LCD display, much like an ordinary metal detector.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>