Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double explosion challenges theories of ways stars live and die

15.06.2007
A unique discovery of two celestial explosions at exactly the same position in the sky has led astronomers to suggest they have witnessed the death of one of the most massive stars that can exist.

A global collaboration of astronomers led by Queen's University Belfast, teamed up with Japanese supernova hunter, Koichi Itagaki, to report an amazing new discovery in 'Nature' this week (14 June). This is the first time such a double explosion has been observed and challenges our understanding of star-deaths.

In 2004, Koichi Itagaki discovered an exploding star in the galaxy UGC4904 (78 million light years away in the Lynx constellation), which rapidly faded from view in the space of ten days. Never formally announced to the community, Itagaki then found a new, much brighter explosion in the same place only two years later, which he proposed as new supernova. Queen's astronomers Professor Stephen Smartt and Doctor Andrea Pastorello, who are based in the Astrophysics Research Centre at the University, immediately realised the implications of finding two explosions at the same position on the sky.

The astronomers began observing the 2006 supernova (named SN2006jc) with a wide range of large telescopes and analysed Itagaki's images to show the two explosions were in exactly the same place. The most likely explanation for the 2004 explosion was probably an outburst of a very massive star like Eta-Carinae, which was observed to have a similar giant outburst in the 1850s. The 2006 supernova was the final death of the same star.

Professor Smartt is funded by a prestigious EURYI fellowship to study the birth and death of stars. Speaking about the discovery, he said "The supernova was the explosion of a massive star that had lost its outer atmosphere, probably in a series of minor explosions like the one Koichi found in 2004. The star was so massive it probably formed a black hole as it collapsed. This is the first time two explosions of the same star have been found, and it challenges our theories of the way stars live and die. "

Dr. Pastorello said "We knew the 2004 explosion could be a giant outburst of very massive star, and we know that only the most massive stars can produce this type of outburst. So the 2006 supernova must have been the death of the same star, possibly a star 50 to 100 times more massive than the Sun. And it turns out that SN2006jc is a very weird supernova - unusually rich in the chemical element helium which supports our idea of a massive star outburst then death."

Dr. Pastorello used UK telescopes on La Palma (the Liverpool Telescope, and William Herschel Telescope), in a combined European and Asian effort to monitor the energetics of SN2006jc. He showed that the exploding star must have been a Wolf-Rayet star, which are the carbon-oxygen remains of originally very high mass stars.

Although this is the first time two such explosions have been found to be coincident, they could be more frequent than currently thought. The future Pan-STARRS project, a new telescope with the world's largest digital camera which can survey the whole sky once a week could search for these peculiar supernovae. Queen's is a partner in the Pan-STARRS science team and hope to use it to understand how the most massive stars in the Universe die.

The Science and Technology Facilities Council funds UK research in astronomy and access to telescopes such as the William Herschel Telescope.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht Light provides spin
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht The surprising environment of an enigmatic neutron star
18.09.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>