Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fermilab physicists discover "triple-scoop" baryon

14.06.2007
Three-quark particle contains one quark from each family.

Physicists of the DZero experiment at the Department of Energy's Fermi National Accelerator Laboratory have discovered a new heavy particle, the Îb (pronounced "zigh sub b") baryon, with a mass of 5.774±0.019 GeV/c2, approximately six times the proton mass. The newly discovered electrically charged Îb baryon, also known as the "cascade b," is made of a down, a strange and a bottom quark. It is the first observed baryon formed of quarks from all three families of matter. Its discovery and the measurement of its mass provide new understanding of how the strong nuclear force acts upon the quarks, the basic building blocks of matter.

The DZero experiment has reported the discovery of the cascade b baryon in a paper submitted to Physical Review Letters on June 12.

"Knowing the mass of the cascade b baryon gives scientists information they need in order to develop accurate models of how individual quarks are bound together into larger particles such as protons and neutrons," said physicist Robin Staffin, Associate Director for High Energy Physics for the Department of Energy's Office of Science.

The cascade b is produced in high-energy proton-antiproton collisions at Fermilab's Tevatron. A baryon is a particle of matter made of three fundamental building blocks called quarks. The most familiar baryons are the proton and neutron of the atomic nucleus, consisting of up and down quarks. Although protons and neutrons make up the majority of known matter today, baryons composed of heavier quarks, including the cascade b, were abundant soon after the Big Bang at the beginning of the universe.

The Standard Model elegantly summarizes the basic building blocks of matter, which come in three distinct families of quarks and their sister particles, the leptons. The first family contains the up and down quarks. Heavier charm and strange quarks form the second family, while the top and bottom, the heaviest quarks, make the third. The strong force binds the quarks together into larger particles, including the cascade b baryon. The cascade b fills a missing slot in the Standard Model.

Prior to this discovery, only indirect evidence for the cascade b had been reported by experiments at the Large Electron-Positron collider at the CERN Laboratory near Geneva, Switzerland. For the first time, the DZero experiment has positively identified the cascade b baryon from its decay daughter particles in a remarkably complex feat of detection. Most of the particles produced in high-energy collisions are short-lived and decay almost instantaneously into lighter stable particles. Particle detectors such as DZero measure these stable decay products to discover the new particles produced in the collision.

Once produced, the cascade b travels several millimeters at nearly the speed of light before the action of the weak nuclear force causes it to disintegrate into two well-known particles called J/Ø ("jay-sigh") and Î- ("zigh minus"). The J/Ø then promptly decays into a pair of muons, common particles that are cousins of electrons. The Î- baryon, on the other hand, travels several centimeters before decaying into yet another unstable particle called a Ë ("lambda") baryon, along with another long-lived particle called a pion. The Ë baryon too can travel several centimeters before ultimately decaying to a proton and a pion. Sifting through data from trillions of collisions produced over the last five years to identify these final decay products, DZero physicists have detected 19 cascade b candidate events. The odds of the observed signal being due to something other than the cascade b are estimated to be one in 30 million.

DZero is an international experiment of about 610 physicists from 88 institutions in 19 countries. It is supported by the Department of Energy, the National Science Foundation, and a number of international funding agencies. Fermilab is a national laboratory funded by the Office of Science of the U.S. Department of Energy, operated under contract by Fermi Research Alliance, LLC.

Judy Jackson | EurekAlert!
Further information:
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>