Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When atoms collide

05.06.2007
Scientists at the UK’s National Physical Laboratory (NPL) have proposed a new way to determine accurate time faster.

Very precise time keeps the Internet and e-mail functioning, ensures television broadcasts arrive at our TVs and is integral to a network of global navigation satellites (such as the Global Positioning System) used for precision mapping and surveying, environmental monitoring and personal location-based services.

But time can only be useful if it is the same for everyone. And that requires a single source against which we can all check our clocks. The caesium fountain that NPL operates is one of only a handful of highly precise measurement devices around the world that inform the global primary time standard – the definition of accurate time. NPL’s atomic fountain measures the accuracy of existing time standards and feedback readings to inform any adjustments to Coordinated Universal Time – the basis for the worldwide system of timekeeping.

NPL’s instruments do not simply measure time. They measure the absorption of electromagnetic waves by caesium atoms and detect the resultant changes in the internal state of those atoms. The absorption peaks at a specific electromagnetic frequency. They can then lock this frequency and use the number of oscillations of that frequency, during a given period of time, to define a second, like the ticks of a conventional clock. One second, for example, corresponds to just over nine billion oscillations of an electromagnetic signal locked to the peak change in caesium atoms.

But an atomic clock is never perfect. One of the challenges when identifying the accurate frequency reference is that it tends to fluctuate very slightly and its average value is only known within a certain error range. In atomic fountains, these tiny errors are largely due to atoms colliding with each other inside the fountain. This is known as a collisional frequency shift. There have been several theories about what affects the collision shift and how to compensate for it but existing methods can take days or even weeks. The team at NPL has discovered a potential new approach, reducing the time it takes to confirm the accuracy of a frequency reading to a matter of hours – ten times faster than it can currently be done. It is based around the state of the atoms during their flight in the fountain. They can be in one of two states – upper or lower, or in a combination of the two. The NPL team in collaboration with NIST (USA) and PTB (Germany) discovered that the effect the collisions have on the frequency signal depends on which state the atoms are most in. Upper results in a negative shift, lower in a positive shift. This suggests the existence of a split between upper and lower state atoms that cancels the shift out and results in no affect to the frequency signal. Operating a caesium fountain at this ‘zero-shift’ point is an attractive proposition as it removes the need to compensate for collision shifts and accelerates the process of confirming the accuracy of frequency standards. This means laboratories providing the primary time standard can feed back more readings in any given period of time, increasing the accuracy of recommended adjustments to UTC, potentially improving the overall accuracy of the world’s time.

Fiona-Grace Peppler | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht Electrons use the zebra crossing
17.12.2018 | Universität Stuttgart

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>