Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smooth surfaces are tacky at small scales

15.03.2002


Spot-welds stick sliding metals


Metals stick as they slip if pressed together and pushed.
© GettyImages



Two smooth, cold, metal surfaces are like pieces of tacky Sellotape. They form tiny spot welds that have to be broken apart before they can slide over each other. This, claim two physicists in California1, is another reason why metals stick as they slip if they are pressed together and pushed.

Such microscopic causes of friction and wear are increasingly important as the scale of mechanical engineering shrinks to below what’s visible. Here, conventional methods of lubrication start to fail.


Stick–slip motion is common between surfaces that are not lubricated. It causes chalk to screech on a blackboard, makes a violin string vibrate when a bow passes across it, and can wear out watch mechanisms and cutting tools.

Roughness is thought to be behind most stick–slip. Even an apparently smooth sheet of metal or glass is usually covered with tiny ridges, pits and scratches. These can interlock like teeth until the driving force becomes great enough to break the irregularities or push them over one another. Then the surface lurches forward until the protrusions enmesh further along.

This is not the whole story, say Raffi Budakian and Seth Putterman of the University of California at Los Angeles. They found that tiny strings formed and broke between two tiny gold balls as they rubbed together.

Ball game

Budakian and Putterman glued one ball, a fifth of a millimetre across, to the tip of an optical fibre. The other, two-millimetre ball they attached to a platform that they could move precisely.

When the small ball moved, the optical-fibre beam moved with it. Thus, the researchers could accurately measure the ball’s displacement, and the forces acting on it. From changes in an electrical current flowing between the balls, they also deduced the size of the area of contact between them.

First, the duo measured how hard it was to pull the balls apart vertically. They found that this rupture stress increased as the area of contact got bigger.

They concluded that the metal balls are tacky at nanometre scales: held together for several seconds, narrow bridges of gold form between the two surfaces, which stretch and break as the balls are separated. The force needed to break these necks of gold depends on how thick they are.

Then the researchers looked at horizontal sliding motions. They found that the force needed to initiate a slip was the same as the force needed to rupture a gold neck as the balls were pulled apart vertically. In other words, it seems that tiny strings of gold are created, stretched and snapped as the metal surfaces move over one another.

References

  1. Budakian, R. & Putterman, S.J. Time scales for cold-welding and the origins of stick–slip behaviour. Preprint, (2001).


PHILIP BALL | Nature Science News

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>