Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building our new view of Titan

04.06.2007
Two and a half years after the historic landing of ESA’s Huygens probe on Titan, a new set of results on Saturn’s largest moon is ready to be presented. Titan, as seen through the eyes of the European Space Agency’s Huygens probe, still holds exciting surprises, scientists say. The results are presented in a special edition of Planetary and Space Science Journal and at a press conference held today (June 1st) in Athens.

On 14 January 2005, after a seven-year voyage on board the NASA/ESA/ASI Cassini spacecraft, ESA’s Huygens probe spent 2 hours and 28 minutes descending by parachute to land on Titan. It then sent transmissions from the surface for another seventy minutes before Cassini moved out of range.

Professor John Zarnecki of The Open University led the Surface Science Package (SSP) on Huygens “Huygens has provided us with a rich seam of data to mine – and we shall be digging through it for some time to come. The Surface Science Package returned immediate information about Titan about the landing Huygens made but it is also a part of the longer term picture, piecing together the whole environment on Titan.”

UK participation in the Cassini-Huygens mission was funded by the Science and technology Facilities Council.

By driving their computer models of Titan to match the data returned from the probe, planetary scientists can now visualise Titan as a working world. “Even though we have only four hours of data, it is so rich that after two years of work we have yet to retrieve all the information it contains,” says François Raulin, Huygens Interdisciplinary Scientist, at the Laboratoire de Physique et Chimie de l'Environnement, Paris.

The new details add greatly to the picture of Saturn’s largest moon. “Titan is a world very similar to the Earth in many respects,” says Jean-Pierre Lebreton, ESA Huygens Project Scientist.

The journey Huygens took to the surface is the subject of the most intense scrutiny, with many papers on the subject. When an anomaly robbed scientists of data from the Doppler Wind Experiment (DWE), it was followed by a painstaking analysis of data collected by radio telescopes on Earth that were tracking Huygens. Engineers and scientists succeeded in recovering the movement of the probe, providing an accurate wind profile and helping them place some of the images and data from Huygens into their correct context.

Now corroborating evidence, resulting from a thorough analysis of many instruments and engineering sensors on Huygens, is adding unprecedented detail to the movement of the probe during its descent.

The team combined temperature and pressure measurements from the Huygens Atmosphere Structure Instrument (HASI) with other measurements from the Surface Science Package (SSP), the Gas Chromatograph and Mass Spectrometer (GCMS), Descent Imager/Spectral Radiometer (DISR) and the Doppler Wind Experiment (DWE) to arrive at their trajectory.

Ralph Lorenz, Johns Hopkins University Applied Physics Lab, Maryland, a co-investigator on the SSP shows that the SSP revealed a turbulent atmospheric layer between 20 and 30 kilometres from the surface. By comparing the motions in this layer with those recorded on terrestrial balloons, Lorenz and his SSP colleagues suggest that the turbulence may have been associated with clouds.

Another report by Lorenz indicates that the density and temperature structure of the atmosphere can be corroborated using data from the engineering sensors on Huygens.

Huygens found that the atmosphere was hazier than expected because of the presence of dust particles – called ‘aerosols’. Now, scientists are learning how to interpret their analysis of these aerosols, thanks to a special chamber that simulates Titan’s atmosphere.

When the probe dropped below 40 kilometres in altitude, the haze cleared and the cameras were able to take their first distinct images of the surface. They revealed an extraordinary landscape showing strong evidence that a liquid, possibly methane, has flowed on the surface, causing erosion. Now, images from Cassini are being coupled with the ‘ground truth’ from Huygens to investigate how conditions on Titan carved out this landscape.

As the probe descended, Titan’s winds carried it over the surface. A new model of the atmosphere, based on the winds, reveals that Titan’s atmosphere is a giant conveyor belt, circulating its gas from the south pole to the north pole and back again.

Also, the tentative detection of an extremely low frequency (ELF) radio wave has planetary scientists equally excited. If they confirm that it is a natural phenomenon, it will give them a way to probe into the moon’s subsurface, perhaps revealing an underground ocean.

Julia Maddock | alfa
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMCLE9RR1F_0_ov.html

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>