Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XMM-Newton reveals X-rays from gas streams around young stars

01.06.2007
XMM-Newton has surveyed nearly two hundred stars under formation to reveal, contrary to expectations, how streams of matter fall onto the young stars’ magnetic atmospheres and radiate X-rays.
The results defy astronomers’ expectations, as the streams of falling matter interact with the hot corona, cooling it, while the ejected streams of gas heat up in shocks as they are ejected from the star.

The new XMM-Newton results paint a dramatic picture of the role magnetic fields play in star formation. “Star formation is a battle between gravity and everything else,” says Manuel Guedel, Paul Scherrer Institut, Villigen, Switzerland, who leads a large project addressing magnetic activity in young stars within the constellation of Taurus.

Star formation results in a complicated system in which the young star is surrounded by a disc of gas and dust. This matter then follows one of three different routes. It finds its way onto the star through magnetic funnels, or stays in the disc to form planets, or is thrown clear of the system in a wind or jet created by the overall magnetic field.

With the help of ESA’s X-ray observatory XMM-Newton, Guedel and his 25 international colleagues are now ready to report new details from the front line.

They used XMM-Newton to target stars in the nearby Taurus Molecular Cloud. This vast cloud in space is one of the star - forming regions nearest to Earth and contains over 400 young stars.

Most of these stars are still accumulating matter, a process known as accretion. As falling matter strikes the surface of the star, it typically doubles the temperature of the surface from 5000 Kelvin to 10 000 Kelvin. This produces an excessive amount of ultraviolet radiation emitted by the star and detected by XMM-Newton’s Optical Monitor. Astronomers had thought that the same shock waves that caused the emission of the ultraviolet excess should also produce an excess of X-rays.

Confusingly enough, previous observations seemed to show that young stars that still accrete matter give off less X-ray emission. To investigate this mystery, amongst several others, ESA approved a large programme of observations with XMM-Newton. The space-borne observatory investigated the densest regions of the Taurus Molecular Cloud for a total of more than 7 days.

The new results from XMM-Newton propose a solution to the mystery. In addition, they bring forward unanticipated discoveries. “We have not seen the expected X-rays that the shocks should produce on the surface of some stars,” says Guedel.

Instead, XMM-Newton’s spectrometers revealed a new and subtle feature suggesting that the falling material cooled the hot X-ray emitting atmosphere of the young stars, suppressing the emission of X-rays.

In certain cases, namely in the more heavily accreting stars, the suppression of the X-rays was such that the team realised that an additional process was at work in these objects. In addition to cooling the outer stellar atmosphere, the gas streams falling onto the star were so dense that they absorbed most of the X-rays that the star’s atmosphere had emitted.

Although such dense streams of gas should also contain dust that would obscure the star at visible wavelengths, the star is seen shining brightly. So what happens to this dust? The team can propose an answer to this as well. “The dust is heated so much by the radiation from the star, that it is vaporised before it can fall on the star,” says Guedel.

The strong X-ray suppression allowed the team to discover yet another X-ray source associated with the same stars coming from relatively cool gas that does not suffer from absorption. "This emission must come from outside the accretion streams," says Guedel. The team interprets the X-rays as evidence that some gas streams ejected by the star form shock waves that heat up very strongly.

The work gives astronomers powerful new insight into the tremendous forces at work in star formation.

Norbert Schartel | alfa
Further information:
http://www.esa.int/esaSC/SEMX379RR1F_index_0.html

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>