Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New VERITAS telescope array may help find 'dark matter'

02.05.2007
Scientists in the Northern Hemisphere have opened a new window on the universe allowing them to explore and understand the cosmos at a much higher level of precision than was previously available.

Think of it as acquiring a new pair of glasses that allow you to see more clearly. These new "glasses" are VERITAS, (the Very Energetic Radiation Imaging Telescope Array System), a major new ground-based gamma-ray observatory, designed to provide an in-depth examination of the universe.

VERITAS is an array of four large optical reflectors that detects high-energy gamma rays by observing the light from secondary showers of particles that these gamma rays generate in the atmosphere. The U.S. Department of Energy's Argonne National Laboratory is a collaborator on the program and will provide input to the analysis of the data that the array produces over the next several years.

"It is expected that this instrument will allow for the detection of an increased number of gamma ray sources, possibly even the indirect detection of the mysterious dark matter in the universe," said Karen Byrum, Argonne physicist.

The telescopes are located at a temporary site in the Coronado National Forest in Mt. Hopkins, Ariz., where they will be operated for two years in an engineering mode while a permanent site is acquired. During these two years, a number of key science projects will be undertaken, as well as collaborative observations with the National Aeronautic and Space Administration's next generation gamma-ray space telescope, GLAST, scheduled for launch later this year.

The sensitive instrumentation of VERITAS has an energy threshold for gamma rays of about 100 GeV and can readily identify sources with an intensity of about 1 photon per minute with an observation lasting an hour. This makes it the most sensitive instrument in the northern hemisphere at these energies.

As a collaborator, Argonne participates in the Dark Matter Key Science Project, the Gamma Ray Burst Key Science Project, the Blazar Key Science Project and will assist in research and development for VERITAS upgrades and for the next generation observatory, which is already being planned.

"Through involvement in the VERITAS collaboration, we are examining other ways to look at high energy physics and bringing to the forefront other topics connected to it," explained Hendrik (Harry) J. M. Weerts, director of Argonne's High Energy Physics Division. "The universe with gamma ray bursts, supernovae, and active galactic nuclei, possess nature's most powerful accelerators."

With involvement in the project since its implementation in 1996, David Schramm Postdoctoral Fellow Deirdre Horan serves as Argonne's lead researcher in the collaboration. She hopes to address fundamental physics through the use of this instrumentation, perform more precise observations of black hole systems, and better understand how the universe was formed.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>