Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bucky's brother -- The boron buckyball makes its debut

25.04.2007
Materials scientists find stable, spherical form for boron

A new study by Rice University scientists predicts the existence and stability of another "buckyball" consisting entirely of boron atoms.

The research, which has been published online and is due to appear as an editor's selection in Physical Review Letters, was conducted bv Boris Yakobson, professor of mechanical engineering and materials science and of chemistry, and his associates Nevill Gonzalez Szwacki and Arta Sadrzadeh.

The original buckyball, a cage-shaped molecule of 60 carbon atoms, was discovered at Rice by Robert Curl, Harold Kroto and Richard Smalley in 1985. The boron buckyball is structurally similar to the original C60 fullerene, but it has an additional atom in the center of each hexagon, which significantly increases stability.

"This is the first prediction of its possible existence," Yakobson said of the boron buckyball, or B80. "This has not been observed or even conceived of before. We do hope it may lead to a significant breakthrough."

In the earliest stages of their work, the team attempted to build a "buckyball" using silicon atoms but determined that it would collapse on itself. Their search for another possible atom led them on a short trip across the periodic table.

"Boron is nearby (one atomic unit from carbon). One reason we tried it was because of proximity," Yakobson said. "Boron also has the ability to catenate, to stick together better, than other atoms, which also made it appealing."

Initial work with 60 boron atoms failed to create a hollow ball that would hold its form, so another boron atom was placed into the center of each hexagon for added stability.

Yakobson estimated that the scientific work, the consideration of the variety of boron clusters to single out the B80, took more than a year, with Szwacki initially leading the work and then Sadrzadeh gradually taking greater part in the effort.

"We thought we had the answer, essentially, after three or four months, but then we had to prove it," Yakobson said. "There are numerous possibilities, but we had to prove that this was the answer. I think we’ve made a convincing case."

Yakobson said it is too early to speculate whether the boron buckyball will prove to be equally or more useful than its Nobel Prize-winning sibling.

"It’s too early to make comparisons," he said. "All we know is that it’s a very logical, very stable structure likely to exist.

"But this opens up a whole new direction, a whole new continent to explore. There should be a strong effort to find it experimentally. That may not be an easy path, but we gave them a good road map."

Following the paper's acceptance, there was a little debate with the journal's editors about whether or not the structure could be named "buckyball." Yakobson mentioned this to Curl.

"Bob (Curl) said with a chuckle that it was more of a ‘buckyball’ than his buckyball," Yakobson said. The reason being that C60 was named for famed architect Buckminster Fuller, because the buckyball looked like conjoined geodesic domes, a structure that Fuller had invented.

"When Fuller made his domes, he made them from triangles because hexagons would collapse," Yakobson said. "In B80, we fill the hexagon with one more atom, making triangles."

Yakobson said having the paper published in Physical Review Letters will help get the attention of experimentalists in the field.

"It is very helpful that this work can be seen and this is just a good instrument for it," he said. "To be able to deliver it to this broad a base of physicists and chemists is a good start."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>