Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic displays that fit on clothing could power revolution in lighting

19.04.2007
A thin film of plastic which conducts electricity and produces solar power could be the basis for a revolution in the way we light our homes and design clothes.

An international research project has begun that could help bring to mass-market organic light emitting devices (OLEDs), which could have far reaching technological implications and cut the cost of lighting by billion of pounds each year.

Because the devices are thin and flexible, lighting and electronic display screens could for the first time be created on almost any material, so that clothes and packaging can display electronic information.

The devices’ uses could vary from lighting that is many times more efficient than current bulbs to clothes whose colour can be changed at will and beer cans that display the latest football results.

At present, the devices are used as displays in some mobile phones and MP3 players, but they are not reliable enough for larger screens such as in TVs and computers as they stop working after a few months.

But now an international consortium of researchers, led by the University of Bath, UK, has begun an £850,000 ($1,700,000), three-year project to put the science behind the devices on a firmer basis, so helping make them efficient enough to be worth producing for the mass market.

The consortium, called Modecom, consists of 13 groups from nine universities and two companies. Three groups are from the UK, six from the USA, and one each from China, Belgium, Italy and Denmark. The European Union is funding the European and Chinese partners.

The devices exploit a discovery made around 15 years ago that some polymers have the unusual property of either turning electricity into light, or light into electricity, depending on how the devices are made.

Because these polymers are thin and flexible, they could be used in a multiplicity of ways:

- as a transparent window. This is like a conventional window during the day, but when it gets dark a switch is turned on and the entire window area emits light in a more efficient way than conventional or energy saving bulbs, promising huge savings

- in garments which could change colour at the press of a button

- in clothing which displays strips of the polymer which run off solar power, allowing electronic messages to be displayed which can be updated. This could be useful for the emergency services such as police or ambulance

- in packaging for common goods that could be made to display electronic messages such as health warnings and recipes, or could emit light

- as a source of solar power to top up mobile phones batteries

- as lightweight, solar power sources that could be rolled up and stored and which would also be ideal for people requiring electricity in remote locations, such as field researchers, mountaineers, sailors and military personnel.

The consortium is co-ordinated by Dr Alison Walker, of the University of Bath’s Department of Physics, who said: "This is a long-term project, and the contributions of many scientists are needed for its success.

“The experimentalists make measurements to test the efficiency of the devices, but it’s hard to get a clear picture of what is going on at present. This project is about making that picture clearer using computer models to develop the theory.

“Success in achieving the goals of cheap, efficient and long lasting devices is essential as we must do everything we can to reduce our energy costs.“

The polymer is made from chains of molecules, and is called organic because these contain carbon. Electrons and holes injected into the polymer film form bound states called excitons that break down under electrical current, emitting light as they do so.

Dr Walker’s part of the consortium’s research uses a mathematical technique called Monte Carlo analysis in which computer-generated random numbers are used to plot the paths of electrons, holes and excitons as they move across the film.

The results from this can be used to calculate how the chemical structure and impurities affect the device’s performance. Chemists can use this data to design more efficient materials.

The Modecom consortium will work on the molecular level and also look at the workings of the device as a whole. This research will also aid the understanding of the polymer materials used in plastic electronics in applications such as electronic paper and intelligent labels on groceries.

Tony Trueman | alfa
Further information:
http://www.universaldisplay.com/video/2002foled257.wmv
http://www.modecom-euproject.org/
http://www.bath.ac.uk/news/multimedia/?20070417

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>