Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the invisible: dark matter charted out to five billion light years

17.04.2007
Most of the matter in the Universe is not the ordinary kind made up of protons, neutrons, and electrons, but an elusive "dark matter" detectable only from its gravity.

Like a tenuous gas, dark matter is all around us - it goes through us all the time without us noticing - but tends to collect in large quantities around galaxies and clusters of galaxies and makes up about one-sixth of the mass of the Universe.

In his talk on Tuesday 17 April at the Royal Astronomical Society National Astronomy Meeting in Preston, Dr Ignacio Ferreras of King’s College London will present the maps of the distribution of "ordinary" and dark matter in nine galaxies out to a distance of five billion light-years from the Sun.

Dr Ferreras worked with Dr Prasenjit Saha (University of Zurich, Switzerland) and Professor Scott Burles (Massachusetts Institute of Technology, USA) to take advantage of a rare astronomical phenomenon known as 'gravitational lensing'. The galaxies they studied serendipitously lie in front of quasars, which are bright sources of light at even greater distances. The gravity of the nearer galaxy and dark matter distorts the quasar light, causing the quasar to be seen as two or four images. The placement of these mirage images, studied using new theoretical techniques in gravitational lensing, makes it possible to measure the total mass and effectively gives scientists a telescope for dark matter!

By analysing the starlight from the galaxies using stellar evolution theory, it is possible to measure the mass of the stars they contain. Combining these ideas with archival data from the Hubble Space Telescope, Dr Ferreras and his colleagues were able to make dark-matter maps.

Current theories of galaxy formation can explain some but not all of these new findings. After the Big Bang, gas should have fallen towards the centres of dark-matter halos, there igniting to form the stars that go on to make up a galaxy. But why is there a higher proportion of dark matter in more massive galaxies? And had these galaxies already finished forming five billion years ago? These questions will only be answered by future theories of galaxy formation.

CONTACT(s):

Dr Ignacio Ferreras
King’s College
University of London
Tel: +44 (0) 20 7848 2150
E-mail: ferreras@star.ucl.ac.uk

Robert Massey | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>