Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ideas about Early Solar System Development May Need Revision

04.03.2002


A new analysis of the mineral composition of meteorites suggests that theories concerning the development of the early solar system may need revision. Announcing their results today in the journal Science, researchers conclude that it took the earth only 20 million years to form from material floating around the early sun. Previous estimates, in contrast, had placed that figure at around 50 million years. The findings also re-open the debate over which types of supernovae could have produced our solar system.


Image: NASA



Measuring the amounts of an isotope of the element niobium (niobium-92) and its daughter isotope zirconium-92 in two meteorite samples provided the researchers with a kind of radioactive chronometer capable of estimating the timing of events in the early solar system. The earlier calculation of 50 million years for the formation of the earth was obtained using the same technique. But this time, the experimenters made sure to avoid contamination of their samples. By paying greater attention to maintaining the purity of the samples, says study co-author Brigitte Zanda-Hewins of Rutgers University, the team was able to produce a more accurate estimate. Additionally, the new, lower figures for the abundance of niobium-92 (which is generated by supernovae) in the early solar system, Zanda-Hewins says, loosen the constraints on the types of supernovae that could have spawned the solar system. The floor is once again open for candidates

Greg Mone | Scientific American

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>