Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country team succeed in characterising boron nitride on a nanometric scale

23.03.2007
The Physics of Materials team at the University of the Basque Country (UPV/EHU), part of the Mixed Centre created between this UPV/EHU Physics of Materials team and the European Theoretical Spectroscopy Facility (ETSF), led by Ángel Rubio, has completed the first comprehensive study of the properties of boron nitrite on a nanometric scale.

The prestigious journal, "Physical Review Letters", one of the most important in the field of physics, has published three articles that summarise the findings of the team. The last of these articles may be consulted in the new issue of the journal - number 98. The thorough control and knowledge of the properties boron nitride opens the door to the design of new materials based on this compound and, likewise, has implications in other fields such as biology.

Boron nitride (BN) is a binary compound of the element boron which consists of equal proportions of boron and nitrogen and is used for coatings in reactors and insulation materials. At a nano level, according to what Ángel Rubio’s group has been able to characterise, the compound has excellent electronic and mechanical properties such as high resistance, and can emit blue light, i.e. a wavelength shorter than red, thus augmenting storage capacity in applications for optoelectronic devices such as DVD, aerials and lasers. Moreover, it forms macroscopic structures (nanostructured molecular solids) through weak, van der Waals-type interactions, which, fundamentally, are in other fields of knowledge, particularly biology and supramolecular chemistry, where molecular self-assembly is dictated by these type of interactions.

The UPV/EHU team has shown, on the one hand, the role played by these weak (van der Waals-type) interactions in the stability of these BN nanostructures [1] and, on the other, the properties of absorption and emission of blue light and near ultraviolet [2], properties that are also the subject of this latest research [3]. The results are also relevant in the understanding of the properties of other carbon compounds (nanotubes, graphene) in fields such as nanoelectronics, photonics and materials for biomedical applications (sensors, biological labels, etc). All these fields are of great current scientific interest throughout the world and great advances are expected in the short and medium term.

Collaborating on this research with Ángel Rubio, who recently received the DuPont Science Award for his notable theoretical contributions to in the field of nanoscience and molecular nanotechnology, were doctors Ludger Wirtz, Andrea Marini, Jorge Serrano and Pablo García, as well as experimental teams from Japan and Grenoble.

[1] First-Principle Description of Correlation Effects in Layered Materials, A. Marini, P. García-González and A. Rubio, Physical Review Letters 96, 136404 - 4 (2006)
[2] Excitons in boron nitride nanotubes: dimensionality effects, L. Wirtz, A. Marini and A. Rubio, Physical Review Letters 96, 126104 - 4 (2006)

[3] Vibrational properties of Hexagonal Boron Nitride: Inelastic X-ray Scattering and ab initio Calculations, J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe, T. Taniguchi, H. Kanda, A. Rubio and L. Wirtz, Physical Review Letters 98, 095503 - 1,4 (2007)

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1239

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>