Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atom chip devices to be developed as result of grant award

16.03.2007
A grant awarded this month could develop atom chip devices which could bring quantum computing closer to a reality.

Dr Michael Kraft at the University of Southampton’s School of Electronics & Computer Science (ECS) and Professor Edward Hinds at Imperial College, London, have been awarded a £1.2 million Basic Technology Translation Grant from the Engineering and Physical Sciences Research Council (EPSRC) to develop atom chip devices.

Their task is to take the toolbox of basic atom chip building blocks which they have developed over the past four years and integrate them on a single chip so that they can be developed into systems robust enough to perform useful functions.

The researchers have found that atom chips have potential uses in a variety of futuristic technologies. For example: sensors with unprecedented accuracy and sensitivity; quantum computing, which harnesses physical phenomenon unique to quantum mechanics to realise a new mode of information processing, and atom interferometers, instruments that exploit the wave characters of atoms.

Specific atom chip devices to be explored in this new research include atomic clocks, accelerometers, interferometers, magnetometers, single photon sources, quantum information processors and molecule traps.

‘Over the past four years, we have done the fundamental research into atom chips,’ said Dr Kraft. ‘Now it’s time to make application-orientated devices.’

According to Dr Kraft, although other international research groups have worked on atom chips, there are not yet any atom chip devices. He believes that this is a development which will be of benefit to industry and the wider community in the longer term.

‘There is a growing need for unprecedented accuracy in accelerometers and gyroscopes,’ he said. ‘Quantum information processors are potentially leading to quantum computers and atom chip devices will facilitate this process.’

The research which begins this month for a four-year period is a natural sequel to the Basic Technology Atom Chips project, on which Dr Kraft and Professor Hinds worked for the past four years, and it is the necessary step to allow the new basic technology to make contact with the commercial world.

Joyce Lewis | alfa
Further information:
http://www.ecs.soton.ac.uk/~mk1/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>