Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists slow and control supersonic helium beam

12.03.2007
Slow helium beam technique is a breakthrough in the field of atomic optics

The speed of a beam of helium atoms can be controlled and slowed using an "atomic paddle" much as a tennis player uses a racquet to control tennis balls, physicists at The University of Texas at Austin have discovered.

The slow helium beam technique—a breakthrough in the field of atom optics—could someday be used to better probe microscopic surfaces or create advanced navigation systems.

"The slow beam is an enabling technology," said Dr. Mark Raizen, the Sid W. Richardson Foundation Regents Chair in Physics. "The next step is to do science with the beams."

Raizen and his colleagues at the Center for Nonlinear Dynamics created the slow helium beams using a yard-long, rapidly spinning titanium blade tipped with silicon wafers that Raizen calls an atomic paddle.

He and his colleagues pumped puffs of super-cooled helium gas into a vacuum chamber containing the paddle using supersonic beam technology developed by Professor Uzi Even of Tel-Aviv University. The paddle's silicon wafers reflected the helium atoms much like a glass mirror reflects a beam of light.

Just as the energy of a tennis ball is absorbed by the motion of a tennis racquet, the motion of the paddle absorbed the energy from the helium beam. The beam was slowed to 560 miles per hour, less than one-eighth the normal velocity of helium.

Raizen's slow beam work is important to understanding the interaction between an atom and a surface, a fundamental aspect of physics that has been investigated since the pioneering work of Otto Stern in 1930. Scientists can bounce atoms off a surface and observe the scattered atoms to learn about the properties of the atoms and the surface.

To date, the main disadvantage of using helium to probe surfaces has been that it typically moves very quickly, nearly 4,500 miles per hour at room temperature. When helium hits a surface at a very high velocity, it tends to scatter in many directions, making it more difficult to observe the atoms after impact and limiting its practical use as a probe.

Slow beams could someday be used in advanced navigation systems with gyroscopes, like those found in airplanes, submarines, space probes and the International Space Station. Gyroscopes allow an object to maintain its orientation or balance, even in outer space.

A gyroscope system based on atoms would have a much higher sensitivity than gyroscope systems that use lasers, said Raizen.

He said that the atomic paddle method could be used in the future to produce even slower helium atoms and ultimately to stop and trap them.

Mark Raizen | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>