Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging 'gridlock' in high-temperature superconductors

07.03.2007
Superconductivity -- the conduction of electricity with zero resistance -- sometimes can, it seems, become stalled by a form of electronic "gridlock."

In a standard scanning tunneling microscope (STM) topographic image of the surface of a cuprate semiconductor (left) atoms are arranged neatly in a crystal lattice (the occasional crosses represent atoms missing from the surface). At right is an image based in the ratio of up and down current flow through the STM tip showing in yellow the probable locations of "holes" where electrons are missing from the crystal structure. Short yellow bars are aligned with copper-oxygen-copper bonds, and Cornell researchers say it is significant that these areas are distributed in random locations and directions. In some cases the arrangement is a unidirectional four crystal-lattice-spacing wide domain, or "nanostripe."

A possible explanation why is offered by new research at Cornell University. The research, reported March 5 at the annual meeting of the American Physical Society in Denver, concerns certain copper oxides -- known as cuprates -- that can become high-temperature superconductors, but also can, in a slightly different configuration, become stalled by the "gridlock."

Understanding how and why that transition takes place is a crucial question for cuprate superconductivity research because, if it did not, the maximum temperatures for superconductivity could conceivably be much higher.

Scanning lightly hole-doped cuprate crystals with a highly precise scanning tunneling microscope (STM) has revealed strong variations in electronic structure with some copper-oxygen-copper (Cu-O-Cu) bonds distributed randomly through the crystal apparently exhibiting "holes" where electrons are missing. The researchers also found larger rectangular regions with missing electrons that were spaced four units of the crystal lattice apart, and may represent the first direct observation of long-sought electronic "stripes" in cuprates.

Yuhki Kohsaka, a postdoctoral researcher working with J.C. Séamus Davis, Cornell professor of physics, reported on the research. A paper on the work by Kohsaka, Davis and others is the cover story in the March 9 edition of Science.

The superconducting phenomenon was first discovered in metals cooled to less than about 4 degrees Celsius above absolute zero (-273 degrees Celsius or -459 degrees Fahrenheit) with liquid helium. Recently, superconductivity at much higher temperatures was discovered in cuprates. Pure cuprates are normally insulators, but when doped with small numbers of other atoms they become superconductors at temperatures as high as 148 degrees above absolute zero (-125 Celsius). The impurities break up the orderly crystal structure and create "holes" where electrons ought to be.

At 16 percent hole-density the cuprates display the highest temperature superconductivity of any known material. But if hole-density is reduced by just a few percent, the superconductivity vanishes precipitously and the materials become highly resistant.

Previous experiments have given evidence that long-range patterns of "stripes" of alternating high- and low-charge density, spaced four units of the crystal lattice apart, exist in doped cuprates, but no imaging technique had been able to detect them.

An STM uses an atom-sized tip that moves in atom-sized steps across a surface. When a voltage is applied between the tip and the surface, a small current known as a "tunneling current" flows between them. By adjusting the height of the tip above the surface to produce a constant current, researchers can see the shapes of individual atoms. And with the exceptional precision of the STM operated by Davis and colleagues at Cornell, the spatial arrangement of electronic states can be imaged. However, the researchers explain in their paper, this technique has serious limitations in imaging the distribution of holes.

The innovation in the new research, based on a suggestion by Nobel laureate Philip W. Anderson, professor emeritus at Princeton University, is to compare current flow in opposite directions at each point in the scan. In simple terms, at regions of the crystal containing fewer electrons (more holes), more electrons can flow down from the tip into these voids than up. The process is called TA-imaging, for tunneling asymmetry.

The Cornell researchers studied cuprate crystals in which about 10 percent of the electrons in the crystal lattice were removed and replaced by holes. The researchers imaged two cuprates with very different chemistry, crystal structure and doping characteristics and found virtually identical results, which they attribute entirely to the spatial arrangement of electrons in the crystal. The areas where TA-imaging suggests that there are holes appear to be centered on oxygen atoms within the Cu-O-Cu bond. This is what has long been expected based on X-ray scattering studies. But "the big surprise," Davis said, "is that when you map this stuff for large distances across the surface no orderly patterns are observed. We had no picture of this before." Perhaps even more exciting, he said, is the discovery that over larger areas the holes do appear to be arranged in patterns that are rectangular and exactly four crystal lattice spaces wide. These so called "nanostripes" are aligned with the crystal lattice but otherwise distributed at random.

"It's plausible that when you increase the number of holes these 'nanostripes' will combine into the orderly stripes seen in other experiments," Davis said. A next step, he said, is to use TA-imaging on more heavily doped materials that exhibit such stripes to see if they are made up of these oxygen-centered holes. But the key challenge, he added, is to understand precisely how the process of hole localization into the patterns seen here suppresses superconductivity.

Co-authors of the paper include graduate students Curry Taylor, Kazuhiro Fujita and Andrew Schmidt of the Laboratory of Atomic and Solid State Physics at Cornell. The Cornell researchers worked in collaboration with scientists at the Université de Sherbrooke, Canada, the Universities of Tokyo and Kyoto and the National Institute of Advanced Industrial Science and Technology in Japan.

Press Relations Office | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>