Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta teams up with New Horizons

05.03.2007
ESA and NASA are mounting a joint campaign to observe Jupiter over the next few weeks with two different spacecraft. Rosetta will watch the big picture from its current position near Mars, whilst New Horizons will take close-up data as it speeds past the largest planet in our Solar System on its journey to Pluto.

The co-ordinated observational campaign of Jupiter using Rosetta and New Horizons began this week. Jupiter remains a fascinating world of scientific mystery. "This is an excellent opportunity to test both spacecraft and to collect valuable science data," says Gerhard Schwhem, Rosetta's Mission Manager. "We couldn't pass up this opportunity to study Jupiter's meteorology, rings, aurorae, satellites, and magnetosphere," says Alan Stern, Southwest Research Institute, Colorado, and New Horizon’s Principal Investigator.

One of Rosetta's targets will be the doughnut-shaped ring of electrically charged gas that circles Jupiter. Known as the Io torus, it lies in Io’s orbit and is at its most dense near the volcanic moon, Io.

The best theory for its formation is that Io's volcanoes throw sulphur and sulphur dioxide into space during their eruptions. In space, the atoms and molecules are stripped of their electrons, electrically charging them and turning them in ions. These become trapped by Jupiter's powerful magnetic field and are pulled around every ten hours by the Jupiter’s rotation. The result is that the Io torus circles Jupiter at Io’s orbital radius.

The idea for the joint observations came from Stern. As well as leading New Horizons, he is also the principal investigator for Rosetta’s ALICE instrument.

ALICE is the ultraviolet imaging spectrometer. Designed to analyse gases being given off by Rosetta's target comet, it will allow scientists to deduce the production rates of water vapour, carbon monoxide and carbon dioxide. For the current campaign, it will be the key instrument used to observe Jupiter. Joining the observations will be VIRTIS (the Visible and Infrared Thermal Imaging Spectrometer) and OSIRIS (the Optical, Spectroscopic, and Infrared Remote Imaging System).

Rosetta will study Jupiter for between 6 and 8 days in total, spread over the next few weeks. Each time Rosetta opens its eyes to look at Jupiter, it will do so for several hours at a time, collecting as much light from the faraway planet as possible. "Rosetta will give us the big picture context in which to see the up-close data from New Horizons," says Stern. During this time, New Horizons will be riding the long tail of magnetism that stretches out behind Jupiter and funnels charged particles away.

Rosetta's ALICE was the prototype for the ultraviolet imaging instrument flying on New Horizons. At Pluto, New Horizons' ALICE will be used to study the tiny world's tenuous atmosphere.

ESA's Rosetta was launched on 2 March 2004 and is currently circling the inner solar system using close fly-bys of the Earth and Mars planets to alter its orbit and eventually swing it out towards Jupiter's orbit, where it will rendezvous with comet Churyumov-Gerasimenko in 2014.

Such ventures add value to the science that can come out of the Rosetta mission. "I am sure that this is fascinating science," says Schwehm.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEMTUJN0LYE_0.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>