Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists rehearse for Foton mission

02.03.2007
Over 60 scientists and technicians have taken up temporary residence in ESA's brand new microgravity science laboratory, where, for the coming days, they will rehearse procedures to prepare experiments for the Foton M3 mission later this year.

Scheduled for launch on 14 September 2007 from Baikonur Cosmodrome, Kazakhstan, the unmanned Foton M3 mission will carry 35 ESA experiments in life and physical sciences. The Foton capsule will spend 12 days orbiting the Earth, exposing the experiments to microgravity, and in the case of some experiments, to the harsh environment of open space, before re-entering the atmosphere and landing in the border zone between Russia and the Kazakhstan.

The science teams behind the mission's biology experiments are currently gathered at ESTEC, ESA's research and technology centre, in Noordwijk, the Netherlands, to practice the preparation of their samples and flight hardware - an important part of the time-critical countdown to launch.

Punctual departure

The simulation - known as the ‘Science Verification Test’ - will exactly follow the timeline planned for the real flight in September. Counting back from the launch, which is expected on the afternoon of Friday 14 September, the ground crew in Baikonur will have precisely 24 hours a couple of days before the launch (from T-72h to T-48h) in which to install the payloads in the Foton capsule.

"To reach Baikonur in time for installation in the Foton capsule all the experiment containers will have to leave Noordwijk no later than 2 am on Monday 10 September," explains René Demets, ESA project biologist. A truck will take 2-tonnes of cargo directly from ESTEC to Rotterdam Airport. From there a chartered aircraft will fly the experiments to Samara, in Russia. After customs clearance and refuelling, the journey will continue to the remote launch site in Baikonur.

“For biology experiments the samples need to be prepared as late as possible,” adds Demets. “By gathering the scientists at ESTEC there will be five days between sample preparation and launch, giving the scientists the latest possible access to their experiments. It means that the teams will have to work day and night over the weekend to prepare their cell cultures and be ready and packed for a punctual departure early on the Monday morning."

Corrective action

Running through those procedures ahead of time gives the teams a chance to iron out any problems before the procedures are done for real in the autumn. Any mistakes or problems could put an experiment in jeopardy.

"What we might do wrong in the preparation stage can lead an experiment to fail," says Michel Lazerges, ESA project manager for the eEristo/eOsteo experiment, which investigates the influence of microgravity on bone cell biology. "By testing and verifying everything in advance we push uncertainty to the last. If anything shows up during the rehearsal, we can take corrective action and make sure we have it right for the flight."

For the same reason, as in September when there will be no room for errors, the simulation will continue when the rest of ESTEC has closed down for the weekend. "We want to test the infrastructure fully," says Demets. "We need to know that we can work under these circumstances. How, for example, will we feed all these people during the weekend when the ESTEC canteen is not available?"

New laboratory

For Peter Schiller, manager of the microgravity science laboratory, this is also an exciting time. The Foton dress rehearsal will be the first wide-scale use of the brand new facility. "For us this is a chance to check out the new lab and to make sure that it fulfils its functions," explains Schiller.

After completion of the Science Verification Test, the next major milestone for the Foton M3 mission will be the Mission Simulation Test due to take place at ESTEC in April. During this test the system used to remotely control and monitor the experiments during the mission will be put through its paces.

Piero Messina | alfa
Further information:
http://www.esa.int/esaHS/SEMUGCN0LYE_index_0.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>