Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new super-thin laser mirror

14.02.2007
Engineers at the University of California, Berkeley, have created a new high-performance mirror that could dramatically improve the design and efficiency of the next generation of devices relying upon laser optics, including high-definition DVD players, computer circuits and laser printers.

The new mirror packs the same 99.9 percent reflective punch as current high-grade mirrors, called distributed Bragg reflectors (DBRs), but it does so in a package that is at least 20 times thinner, functional in a considerably wider spectrum of light frequencies, and easier to manufacture. All these characteristics present critical advantages for today's ever smaller integrated optical devices.

Connie J. Chang-Hasnain, director of UC Berkeley's Center for Optoelectronic Nanostructured Semiconductor Technologies, developed the super-thin mirror, or "high-index contrast sub-wavelength grating (HCG)," with her graduate students, Michael Huang and Ye Zhou. Their work is described in this month's issue of the journal Nature Photonics.

"Today's semiconductor lasers demand mirrors that can deliver high reflectivity, but without the extra thickness," said Chang-Hasnain, who is also a UC Berkeley professor of electrical engineering and computer science. "When you reduce the thickness of a mirror, you are significantly reducing the mass of the device, which also translates into lower power consumption. The mirror we've developed overcomes the hurdles that have stalled the advancement of certain lasers."

To get the coherent, single wavelength light of a laser beam requires a pair of mirrors at opposite ends of a photon-generating gain medium. Light photons of a specific frequency bounce back and forth between the mirrors, building up energy with each pass. As this effect levels off, the gain is said to be saturated, and the light energy is transferred into a laser beam.

Early versions of semiconductor lasers used crystal for the mirrors, which yielded a mere 30 percent reflection. Such a low reflectivity is too inefficient for vertical-cavity surface-emitting lasers (VCSEL) – used in short-range optical communications, optical mice for computers and other applications requiring low power consumption. VCSELs have a particularly short gain medium, so a highly reflective mirror is needed.

High reflectivity can be achieved with DBRs, in which light passes through alternating layers of aluminum gallium arsenide, which has a refractive index of 3.0, and gallium arsenide, which has a higher refractive index of 3.6. The difference in refractive indices allows a small amount of light to be reflected from each pair of alternating layers. The light from the multiple layers adds up to form a strongly reflected coherent beam.

"DBRs can reflect 99.9 percent of light, but it can take up to 80 layers of material to achieve this high reflectivity," said Huang, lead author of the paper. "The DBR ends up being a relatively thick 5 micrometers wide. The precision necessary for the layers also requires a complicated manufacturing process. Our mirror is thinner and will be easier to manufacture, which keeps the cost low."

Instead of multiple levels of alternating refractive-index layers, the HCG mirror developed by the UC Berkeley engineers contains only one pair. In this study, the engineers used aluminum gallium arsenide for the high refractive index layer, coupled with a layer of air, which has a very low refractive index of 1. In addition, the high refractive index layer contained grooves spaced by a distance that is less than a wavelength of light.

In this configuration, light hitting the mirror surface was directed over the grooves. As the light waves passed each semiconductor-air interface, they were strongly reflected back in the opposite direction. The researchers noted that other materials could replace air as the low refractive index material. Silicon dioxide, for instance, has a refractive index of 1.5.

To demonstrate the reflectivity of the HCG, the researchers replaced one of the two DBRs in a vertical-cavity surface-emitting laser with the new mirror. They confirmed that the HCG is capable of providing reflectivity greater than 99.9 percent, equivalent to the DBR.

"The HCG mirror overcomes many of the hurdles that had slowed the advance of VCSEL research," said study co-author Zhou. "In addition to being thinner, it has the advantage of working in a broader range of light frequencies."

The latter attribute is particularly important as optical disc technologies increasingly employ blue-violet lasers, which operate on a shorter wavelength than red lasers. Shorter wavelengths make it possible to focus on smaller units, enabling significantly higher density data storage.

The engineers are also studying applications for the mobile HCG mirror in micro-electromechanical systems (MEMS), such as wavelength tunable lasers, which are used in broadband communications.

"Reducing the size of the laser's mirror also means a dramatic reduction in weight, which is particularly important for high-speed MEMS devices," said Chang-Hasnain.

The researchers added that it may be possible to print this mirror on various surfaces, and that it could one day be used to create organic, plastic displays that can be rolled up for easy transport.

"There is a wide range of products based upon laser optics that could benefit with this thinner mirror," said Huang. "They include light emitting diodes, photovoltaic devices, sensors, computer chips and telecommunications equipment."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>