Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Explosions in the Distant Universe

09.02.2007
Long duration gamma-ray bursts (GRBs), first discovered in the 1970s, are the most explosive events in the Universe. Finding out what happens during these cataclysmic events is a major challenge, partly because they usually occur at the edge of the visible Universe and partly because the bursts last only a matter of seconds.

Observations accumulated over the last decade have led to a consensus that at least some GRBs mark the death throes of a giant star as its core collapses to form a black hole. Until now, it has generally been thought that the black hole ejects a jet of plasma (extremely hot gas) which is blasted outwards at close to the speed of light.

This theory is called into question by a new study led by Pawan Kumar from the University of Texas. The work has been accepted for publication in the journal, ‘Monthly Notices of the Royal Astronomical Society’.

MAGNETIC OUTFLOW

Scientists have long speculated that the gamma-ray emission we see comes from fluctuations in the speed of the ejected material. The faster and slower ejecta collide, producing shocks in the jet which result in the emission of gamma-rays. Although this internal shock model is the standard explanation, it relies on the jet consisting of ordinary matter -- the same sort of material that we are made from -- or what scientists call baryons.

Now, however, Pawan Kumar and colleagues have cast doubt on this model. Instead of the GRBs being generated by internal shocks, Kumar’s team finds that the jet is actually a powerful magnetic outflow which transports huge amounts of energy away from the collapsed star.

Using data from the Swift satellite, Professor Kumar’s team has analysed a sample of 10 gamma-ray bursts that were recorded between January 2005 and May 2006. In each case, Swift collected gamma-ray, X-ray and optical light immediately after the explosions were detected. Such multi-wavelength observations are essential if the researchers are to understand what happens after the brief burst fades and the source object is only visible in X-rays or visible light.

“Swift is uniquely capable of such simultaneous multi-wavelength observations,” said Neil Gehrels of NASA’s Goddard Space Flight Center, Principal Investigator for the Swift satellite.

The new study reveals the physical process responsible for the generation of gamma-ray radiation and the distance from the black hole where this radiation is produced.

"The gamma-ray source is located about 10 billion km from the black hole, or 100 times further than previously thought,” said Professor Kumar. “This and several other lines of evidence put forward in our work suggest that the outflow is dominated by the magnetic field.”

The data indicate that a magnetic jet decays into gamma-rays. The subsequent interaction (of the jet) with the surrounding gas causes intense heating and this produces an afterglow that is seen at X-ray and visible light wavelengths.

Dr. Paul O’Brien from the University of Leicester, a co-investigator on the project, said, “In just a few seconds gamma-ray bursts emit as much energy as the Sun does in 10 billion years. The Swift observations are telling us that this emission is due to an outflow in which magnetic fields transport the energy. If confirmed, this will alter our view of how these objects work.”

“Using the Swift data we can accurately measure the times when the prompt emission stops and the afterglow becomes visible,” said Richard Willingale, also from the University of Leicester. “These times constrain the distance of the emitting region from the black hole and hence the physical processes involved.”

Since its launch on 20 November 2004, Swift has observed over 200 gamma-ray bursts and provides prompt data on almost all of them.

“Swift can turn and observe a gamma-ray burst with its X-ray and optical telescopes in just a few tens of seconds,” said Professor David Burrows from Pennsylvania State University, lead investigator for the X-ray telescope on Swift. “This capability allows us to capture a snapshot of the early emission which carries information on the physical processes involved.”

Dr Silvia Zane, from the Mullard Space Science Laboratory said, “This is going to revolutionise our understanding of the cause of such explosions.”

Peter Bond | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>