Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Observe Superradiance in a Free Electron Laser

23.01.2007
Technique paves way for generating ultra-short pulses in future light sources

At the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, a team of researchers has generated extremely short light pulses using a new technique that could be used in the next generation of light source facilities around the world to catch molecules and atoms in action.

Published on January 19, 2007 in Physical Review Letters, the research team’s findings describe the use of a laser to control the pulse duration of light from a free electron laser (FEL), a type of light source with a brightness up to one billion times higher than that of ordinary synchrotron light. The team also reports the first experimental observation of a phenomenon called superradiance.

Most of the world’s light sources – facilities such as Brookhaven’s National Synchrotron Light Source (NSLS) that produce x-ray, ultraviolet, and infrared light for research in fields ranging from biology to nanotechnology – produce a broad range of wavelengths, or colors of light. This is ideal for hosting a wide variety of experiments, but to understand how molecules change their structure in chemical and biological systems, scientists need extremely short pulses of light (shorter than one trillionth of a second) with short wavelengths. This is where FELs are valuable, as they can provide pulses of light that are a thousand times shorter than those produced at existing light sources and contain a million more photons per pulse. Like a strobe flash, the ultra-short FEL allows scientists to take time-resolved images of biological and chemical processes and various other atomic-scale events.

"In existing light sources, we just take a static snapshot of a sample,” said NSLS physicist Takahiro Watanabe, one of the paper’s authors. “We get the location of the pieces, but what happens if the pieces move? You don’t know how they actually got there. What you want is to take images along the way to see these things move, and that’s where these ultra-fast sources come into play.”

Synchrotron light is produced by accelerating of a beam of electrons and sending it through a magnetic field. Generally, the pulse duration of both synchrotron and FEL light is determined by that of the electron beam. Tremendous effort has been devoted to generating short electron pulses, but scientists have been unable to shorten the electron pulse past a certain point because of forces that repel the electrons in the beam away from each other. At Brookhaven’s Source Development Lab (SDL), researchers found a way to generate a very short FEL pulse that doesn’t depend on the length of the electron pulse. This was done using a titanium-sapphire laser that combines a femtoseconds pulse of light with the much longer electron beam. A femtosecond is extremely fast – one billionth of one millionth of a second. This leads to a femtosecond FEL pulse that keeps growing in intensity and shortening in time duration, which is attributed to a phenomenon called superradiance.

“The electron beam and the laser beam don’t move at the same speed, they slip a little bit,” Watanabe said. “So this scenario provides new areas on the electron beam for the interaction to continue and allows the intensity of light to keep growing.”

Superradiance was first proposed in 1954 as the most efficient way to extract energy from either atomic or molecular systems, but the SDL research group is the first to experimentally observe its effects in this type of FEL setup. Understanding how to produce these intense, ultrafast pulses of light could help scientists around the world as they begin to construct the next generation of light source facilities.

Other members of the group include James Murphy, Xijie Wang, James Rose, Yuzhen Shen, and Thomas Tsang of Brookhaven National Laboratory; Luca Giannessi of the ENEA, Frascati, Italy; Pietro Musumeci of the National Institute of Nuclear Physics, Italy; and Sven Reiche of the University of California, Los Angeles. The Office of Naval Research provided funding for this study. NSLS operations are funded by the DOE’s Basic Energy Sciences program within the Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>