Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCR-led research team detects 'top quark,' a basic constituent of matter

15.12.2006
Subatomic particle appeared without its antimatter partner, says physicist Ann Heinson, co-leader of group of 50 scientists

A group of 50 international physicists, led by UC Riverside’s Ann Heinson, has detected for the first time a subatomic particle, the top quark, produced without the simultaneous production of its antimatter partner – an extremely rare event. The discovery of the single top quark could help scientists better explain how the universe works and how objects acquire their mass, thereby assisting human understanding of the fundamental nature of the universe.

The heaviest known elementary particle, the top quark has the same mass as a gold atom and is one of the fundamental building blocks of nature. Understood to be an ingredient of the nuclear soup just after the Big Bang, today the top quark does not occur naturally but must be created experimentally in a high-energy particle accelerator, an instrument capable of recreating the conditions of the early universe.

“We’ve been looking for single top quarks for 12 years, and until now no one had seen them,” said Heinson, a research physicist in the Department of Physics and Astronomy. “The detection of single top quarks – we detected 62 in total – will allow us to study the properties of top quarks in ways not accessible before. We are now able to study how the top quark is produced and how it decays. Do these happen as theory says they should" Are new particles affecting what we see" We're now better positioned to answer such questions.”

The detection of the top quark on its own was the outcome of a time-consuming process involving hundreds of scientists who constitute the “DZero” collaboration, a team of experimenters studying the top quark in particle collisions.

For its part, Heinson’s team first collected data from collision experiments conducted between 2002 and 2005 at the Tevatron Collider, the world’s highest energy particle accelerator that is comprised of a four-mile long underground ring at the Department of Energy’s Fermi National Accelerator Laboratory in Batavia, Ill. The collisions recorded were those between protons and antiprotons (the antimatter counterparts of protons).

Next, Heinson and her colleagues analyzed the record of high-energy collisions using powerful computers that helped the researchers determine which types of particles resulted from the collisions.

When a proton smashes head-on into an antiproton at nearly the speed of light, the collision occasionally produces a top quark. This heavy, unstable particle exists, however, for only a tiny fraction of a second before it decays into lighter particles, thereby complicating its detection. Physicists therefore must look at the top quark's descendents to identify it.

“We detected the top quark using the electronic signature of its decay products,” said Heinson, the primary author of a research paper on the single top quark’s detection that her group will submit to Physical Review Letters. “We measured the position of charged particles using a silicon vertex detector, which is an instrument – first encountered by the particles after the collision – that can precisely reconstruct the trajectories of charged particles. Since theory predicts single top quark production, we knew what to look for. It was extremely difficult, however, to find.”

In the near future, Heinson’s team plans to analyze more data generated by the Tevatron and also work with a new particle accelerator – the Large Hadron Collider – being built on the outskirts of Geneva, Switzerland, and scheduled to begin operation at the end of 2007.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>