Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Surrey catches high speed tube to success

13.12.2006
Leading UK technology venture company IP Group has teamed up with scientists from the University of Surrey’s Advanced Technology Institute (ATI) and CEVP Ltd, a leader in plasma tool manufacture, to form a new company, Surrey NanoSystems, to provide commercial tools for producing nanomaterials which will revolutionise the semiconductor industry.

IP Group has financed the joint venture company in which ATI scientists are developing a ‘NanoGrowthTM’ Machine in conjunction with specialists from CEVP Ltd. Using patented technologies and recipes developed by the University, the NanoGrowth machine represents the world's first commercial tool for low-temperature growth of carbon nanotubes, which can provide high quality, high speed connections to the next generation of silicon chips. The low temperatures used permit the use of existing silicon semiconductor materials which are not able to withstand the high growth temperatures previously required for the formation of nanotubes.

The research project was also funded by South East England Development Agency (SEEDA) which provided assistance with the early development work, with the aim of helping to realise the potential of nanotechnology in the South East by enabling mass production of nanomaterials as an affordable platform technology.

The revolutionary low temperature carbon nanotube growth process is expected to be of considerable use in both academic and commercial laboratories for the development of practical nanomaterial production techniques for high technology applications. Likely applications include low-resistance nanowires in integrated circuits, semiconducting nanotubes for fabricating high performance transistors, micro-miniature heatsinks, ultra-tough polymer composites, gas sensors and light sources for flat panel displays.

Professor Ravi Silva, Dr Guan Yow Chen of the University of Surrey and Ben Jensen, Technical Director for CEVP Ltd, represent the driving force behind this world leading development. Ben Jensen has previously developed and built machines for a large range of blue chip customers including IBM, Motorola, Segate, General Motors and Cambridge University.

Professor Michael Kearney, the University’s Head of School for Electronics and Physical Sciences, commented: “At Surrey we have created an environment which encourages an entrepreneurial attitude towards research and its exploitation. The active support of the University, local businesses, SEEDA and DTI have been essential ingredients in realising this breakthrough in nanotechnology manufacturing.”

Alan Aubrey, Chief Executive of IP Group, said: “This is our first spin-out company from the University of Surrey since setting up a commercialisation partnership with the university in February. We are delighted to have completed this investment in such an exciting growth area – backed by such a prestigious, award-winning team.”

Ben Jensen said: “I am incredibly excited by the partnership mix between IP Group, the University of Surrey and Surrey NanoSystems. This will enable the company to break new ground in the manufacturing and use of carbon nanotubes and nanostructures within CMOS process window. It will finally allow the material to be brought into the mainstream semiconductor manufacturing areas that from today should be limited only by the imaginations of the world’s leading scientists.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk
http://portal.surrey.ac.uk/portal/page?_pageid=799,1248861&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>