Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronauts to get Norwegian indoor climate check

22.11.2006
Under the terms of a contract with ESA, the European Space Agency, SINTEF and the German company Kayser-Threde GmbH have joined forces to develop an advanced system for identifying and measuring gases in indoor environments.

The new measurement technique is also suitable for a wide range of applications on Earth.

The system is currently in the process of being handed over to NASA. Plans are for the US space organisation to take the unit up to the ISS next summer, using an unmanned cargo spaceship.

After a ten-day test phase, the Norwegian-German system will be trialled in the ISS, at first for six months, in order to provide useful data on gas emissions. If the system passes its tests, the next version will become a regular part of the space station’s monitoring equipment.

Protecting astronauts

The owners of the ISS wish to prevent its inhabitants from breathing in gases that are either unpleasant, toxic or carcinogenic. Just as on Earth, gases will evaporate out of walls, interiors and equipment. Other gases may come from leaks or overheating, while the human body also produces gases.

And out in space, we cannot simply open a window! In the space station, the astronauts are completely dependent on the air purification system.

Through the needle’s eye

Equipment for measuring gases is installed on board the ISS as a matter of safety, so that the astronauts can quickly see whether the air purification system has failed or a leak has occurred, and put countermeasures into effect. But at present, only a few gases can be measured rapidly and frequently. The time taken to identify other gases is measured in hours, while some can only be measured after samples of the air have been returned to earth.

Experts from industry and scientists have been competing to develop the next generation of measuring equipment. Today, the leading candidate for use on board the ISS is the new system from SINTEF and the German company Kayser-Threde GmbH.

“World championship” in gas measurement

A few years ago, in order to provide a foundation for the choice of new measurement technology, NASA organised an unofficial “World Championship” in gas measurement, in which the Norwegian-German solution went right to the top.

The system gained maximum score for its ability to recognise gases in NASA’s text mixtures and to indicate their concentrations. Since then, the Norwegian and German partners have improved the sensitivity of the system even more, and they have produced a more compact, lighter version which is more suitable for the weight and space limitations inherent in space-station deployment.

Works by “seeing” gases

The system, which goes under the name of ANITA, works rapidly and completely automatically and presents its results in real time. During the upcoming trials, however, the astronauts will not have direct access to the results, as all the data will be transmitted via NASA and further processed by SINTEF.

The solution is based on optical technology. The system “sees” gases with the aid of a beam of infrared radiation. SINTEF’s primary contribution has been in the methods used by the system to interpret its own optical measurements.

According to SINTEF’s project manager Atle Honne, this is a field that has demanded a great deal of new development efforts. Honne is proud of the results. Ground-based tests have shown that the system is capable of discriminating between at least 32 different gases in all sorts of mixtures.

The main point of the space station trials is to demonstrate that the system is also capable of functioning under “space-ship” conditions. That NASA wants such a long period of testing is due to the fact that the organisation want to acquire better air-quality data for its space station.

Earth-bound benefits too

SINTEF scientist Atle Honne explains that the new measurement technique is also suitable for a wide range of applications on Earth, which is the main reason for SINTEF’s decision to go in for this project. “We can envisage a whole series of applications, from monitoring industrial processes to use on board submarines and other sites where it is vital to control indoor climate”, he says.

By Svein Tønseth

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>