Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planck instruments ready for integration

17.11.2006
Engineers are ready to begin integrating the scientific instruments into ESA's Planck satellite. The pair of instruments will allow the spacecraft to make the most precise map yet of the relic radiation left behind by the formation of the Universe.

The integration of Planck's two instruments marks a major milestone for the mission. "We have been working on the design of these instruments for 14 years. For most of that time we have been living in a paper world; to finally have them as pieces of hardware feels great," says Jan Tauber, the Planck Project Scientist.


Combined focal plane of Planck's two instruments

The instruments are the key to the mission. Working in tandem, they will significantly advance our knowledge of the Big Bang. During the Big Bang, all of space was a tremendously hot furnace, filled with particles and radiation. In the approximately 13 thousand million years since then, the Universe has expanded and the radiation has cooled to become microwaves.

The Planck spacecraft will use a 1.5 metre mirror to systematically collect the cosmic microwave background radiation from the whole sky, and feed it to the two instruments.

The two instruments detect the collected radiation in different ways. The Low Frequency Instrument (or LFI) will convert the lower energy microwaves into electrical voltages, rather like a transistor radio.

The High Frequency Instrument (or HFI) works by converting the higher energy microwaves to heat, which is then measured by a tiny electrical thermometer.

These signals will be analysed for tiny differences in strength. Such variations indicate differences in the density of matter in the early Universe. Slightly denser regions became the galaxies we see today, whereas the less dense areas became the great voids that fill parts of space. This pattern is influenced by the amount of normal matter, dark matter and dark energy that fills the Universe. So using Planck's maps, astronomers will be able to place the most stringent limits yet on the quantities of these three universal components.

There is even a possibility that Planck will detect a slight distortion of the microwave background caused by a suspected period in cosmic history, known as the inflationary epoch. Inflationary theory postulates that the entire Universe underwent a period of enormously accelerated expansion just after the Big Bang. If so, it would cause the whole of space to ripple in a highly specific way. This slight ripple might show up in the Planck data. "Of all the exciting science that we will do, this is the most exciting possible measurement of all," says Tauber.

Between now and Planck's launch in mid-2008, there remain a number of important, additional milestones. For example, the entire spacecraft must be tested at a special cryogenic facility built at the Centre Spatial de Liège, Université de Liège, Belgium. "This will be a big test for us and the satellite," says Tauber.

"The test is necessary because the instruments must be operated at extremely cold temperatures," says Thomas Passvogel, ESA Project Manager for Herschel and Planck. "In the case of HFI, the operating temperature is just one tenth of a degree above absolute zero."

On launch day itself, Planck will be lofted into space by an Ariane 5 rocket from Europe's spaceport in Kourou, French Guiana. Inside the nose cone, Planck will be keeping company with ESA's Herschel infrared space telescope. With a 3.5 metre mirror, Herschel will be the orbiting telescope with the largest mirror ever deployed in space. Together Planck and Herschel will survey the cold Universe. Instead of looking for the formation of the Universe, however, Herschel's primary mission will be to see the formation of stars and galaxies.

Thomas Passvogel | alfa
Further information:
http://www.esa.int/esaSC/SEMF10TJJUE_index_0.html

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>