'Tornadoes' are transferred from light to sodium atoms

The new quantum physics technique can be used to manipulate Bose-Einstein condensates (BECs), a state of matter of worldwide research interest, and possibly used in quantum information systems, an emerging computing and communications technology of potentially great power.

As reported in the Oct. 27 issue of Physical Review Letters,* the research team transferred orbital angular momentum–essentially the same motion as air molecules in a tornado or a planet revolving around a star–from laser light to sodium atoms.

The NIST experiment completes the scientific toolkit for complete control of the state of an atom, which now includes the internal, translational, and rotational behavior. The rotational motion of light previously has been used to rotate particles, but this new work marks the first time the motion has been transferred to atoms in discrete, measurable units, or quanta. Other researchers, as well as the NIST group, previously have transferred linear momentum and spin angular momentum (an internal magnetic state) from light to atoms.

The experiments were performed with more than a million sodium atoms confined in a magnetic trap. The atoms were chilled to near absolute zero and in identical quantum states, the condition known as a Bose-Einstein condensate in which they behave like a single “super-atom” with a jelly-like consistency. The BEC was illuminated from opposite sides by two laser beams, one of them with a rotating doughnut shape. Each atom absorbed one photon (the fundamental particle of light) from the doughnut laser beam and emitted one photon in the path of the other laser beam, picking up the difference in orbital angular momentum between the two photons. The interaction of the two opposing lasers created a corkscrew-like interference pattern, inducing the BEC to rotate–picture a rotating doughnut, or a vortex similar to a hurricane.

The researchers demonstrated control over the process by inducing the cloud of atoms to simultaneously rotate and stand still, or to rotate simultaneously in opposite directions with varying amounts of momentum–a mind-bending peculiarity of quantum physics known as superposition.

Media Contact

Laura Ost EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors