Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Five years of bright light for top research

27.10.2006
The Swiss Light Source (SLS) is the most advanced synchrotron light source in the world and continually draws scientists from all over the world whose experiments benefit from the high quality beam.

The Swiss Light Source (SLS) started operating five years ago in Villigen, Switzerland. Since then, the facility at the Paul Scherrer Institute (PSI) has been available for use by researchers from universities and industry. The SLS generates beams of light which are extremely fine and highly intensive. The facility acts as both a gigantic microscope and a multi-coloured micro-spotlight. It enables researchers to penetrate hitherto unexplored microcosmic depths. For example, it can help them decode the structure of proteins, or explore the characteristics of superconductors – and all at magnitudes of thousandths of a millimetre.

A successful tool for international science

In 2005, 830 researchers undertook a total of 677 experiments. These scientists mainly come to PSI from Switzerland, Germany, Italy and France; and they include biologists, chemists, physicists, environmental scientists and geologists. And still they come! Since the SLS went into operation with four beamlines, the rate of occupation has increased steadily. There are now ten beamlines in operation and they are so popular that the demand for measuring time outstrips supply several times over. By 2010, there should be eighteen to twenty beamlines in operation.

The SLS is the most advanced synchrotron light source in the world. The beam provided here is very brilliant and extremely stable, which gives better experimental results. This premium quality is based on new technologies that were developed at PSI and have frequently been copied since then. The construction of the SLS has already paid its way in the form of research published in scientific journals. According to Timothy Richmond winner of the 2006 Marcel Benoist Prize; “The SLS is one of the best facilities in the world, and has advanced my work”. Richmond is a Professor at the ETH in Zurich, and was honoured with the “Swiss Nobel Prize” for clarifying the structure of nucleosomes, the basic units of chromosomes.

Dr. Heinz Weyer | alfa
Further information:
http://www.psi.ch

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>