Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Sun Satellites, With UNH Sensors Aboard, Poised to Launch

25.10.2006
NASA's Solar TErrestrial RElations Observatory (STEREO) mission will dramatically improve understanding of the powerful solar eruptions that can send more than a billion tons of the sun's outer atmosphere hurtling into space. The twin STEREO spacecraft each carry an instrument designed and built by scientists at the University of New Hampshire in collaboration with several other institutions.

STEREO is scheduled to launch from Cape Canaveral Air Force Station, Fla. on the evening of Wednesday, October 25 aboard a Delta II rocket. The launch window extends from 8:38 - 8:53 p.m. EDT.

The mission is comprised of two nearly identical spacecraft the size of golf carts. Their observations will enable scientists to construct the first-ever three-dimensional views of the sun. These images will show the sun's stormy environment and its effect on the inner solar system. The data are vital for understanding how the sun creates space weather.

During the two-year mission, the two spacecraft will explore the origin, evolution and interplanetary consequences of coronal mass ejections, some of the most violent explosions in our solar system. When directed at Earth, these billion-ton eruptions can produce spectacular aurora and disrupt satellites, radio communications and power systems. Energetic particles associated with these solar eruptions permeate the entire solar system and may be hazardous to spacecraft and astronauts.

The UNH component of the mission is called the PLAsma and Supra-Thermal Ion Composition (PLASTIC) investigation and will provide plasma characteristics of protons, alpha particles and heavy ions. Solar wind protons and alpha particles constitute most of the mass in the solar wind and are therefore the primary components exerting kinetic pressure on the Earth’s magnetosphere – one of the drivers for space weather.

PLASTIC is the primary sensor on STEREO for studying coronal-solar wind and solar wind-heliospheric processes. The PLASTIC investigation is an international collaborative effort by the UNH (lead institution), the University of Bern, the University of Kiel, the Max Planck Institute for Extraterrestrial Physics, and NASA Goddard Space Flight Center.

UNH’s lead scientist for PLASTIC is associate research professor Antionette “Toni” Galvin. “The NASA STEREO mission, for the first time, will routinely take images of the extended solar atmosphere with remote imaging instruments on one STEREO spacecraft, while taking direct samples of the same solar wind parcel as it flows by the other STEREO spacecraft,” Galvin said. “STEREO is opening a new era in our understanding of the sun and its influence on the Earth.”

The solar wind is a continuous stream of charged particles that come from the sun and carry its extended atmosphere and magnetic field. Traveling at more than a million miles per hour, the solar wind fills interplanetary space and creates space weather. The composition of the solar wind provides a means of identifying and characterizing the source regions on the sun that are emitting these particles – a process that is essential in the forecasting of certain types of space weather.

"In terms of space-weather forecasting, we're where weather forecasters were in the 1950s," said Michael Kaiser, STEREO project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "They didn't see hurricanes until the rain clouds were right above them. In our case, we can see storms leaving the sun, but we have to make guesses and use models to figure out if and when they will impact Earth."

To obtain their unique stereo view of the sun, the two observatories must be placed in different orbits, where they are offset from each other and Earth. Spacecraft "A" will be in an orbit moving ahead of Earth, and "B" will lag behind, as the planet orbits the sun.

Just as the slight offset between eyes provides depth perception, this placement will allow the STEREO observatories to obtain 3-D images of the sun. The arrangement also allows the spacecraft to take local particle and magnetic field measurements of the solar wind as it flows by the spacecraft.

STEREO is the first NASA mission to use separate lunar swingbys to place two observatories into vastly different orbits around the sun. The observatories will fly in “phasing” orbits from a point close to Earth to one that extends just beyond the moon.

Approximately two months after launch, mission operations personnel at the Johns Hopkins University Applied Physics Laboratory, Laurel, Md., will use a close flyby of the moon to modify the orbits. The moon's gravity will be used to direct one observatory to its position trailing Earth. Approximately one month later, the second observatory will be redirected after another lunar swingby to its position ahead of Earth. These maneuvers will enable the spacecraft to take permanent orbits around the sun.

Each STEREO spacecraft has four scientific investigations, one of which is PLASTIC. The observatories have imaging telescopes and equipment to measure solar wind particles and to perform radio astronomy.

"STEREO is charting new territory for science research and the building of spacecraft. The simultaneous assembly, integration and launch of nearly identical observatories have been an extraordinary challenge," said Nick Chrissotimos, STEREO project manager at Goddard.

The STEREO mission is managed by Goddard. The Applied Physics Laboratory designed and built the spacecraft. The laboratory will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results.

“We look forward to a wonderfully productive STEREO mission in which students at UNH will have an opportunity to work at the forefront of solar research,” said Roy Torbert, director of the UNH Space Science Center.

For more information about STEREO and a gallery of images, visit: http://www.nasa.gov/stereo.

Editors and reporters: Toni Galvin, principal investigator for PLASTIC, and project research scientist Mark Popecki can be reached directly via the following means: Galvin: cell phone – (603)-661-9212; E-mail - toni.galvin@unh.edu; office – (603) 862-3511 or -0022 (secretary); Popecki: cell phone – (603) 767- 4464; E-mail –mark.popecki@unh.edu; office – (603) 862-2957.

David Sims | EurekAlert!
Further information:
http://www.nasa.gov/stereo
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>