Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists of the UGR participate in the most ambitious mission of the ESA to discover the origin of the Universe

23.10.2006
What happened after the Big Bang? How did the Universe originate? or When did life arise?

They are some of the questions mission Planck intends to answer starting on 2007, one of the most ambitious projects of the ESA (European Space Agency) in which the University of Granada takes part with the design of an instrument and the study of the formation of galaxies in that first Universe. The professor of Theoretical and Cosmos Physics, Eduardo Battaner, responsible for the participation of the University, explains that the objective of the project is to observe the Cosmos only 400,000 years after the Big Bang, a fact of enormous transcendence taking into account that, at present, it is 14,000 million years old.

Although two missions have been previously launched with this same goal –COBE in 1992 and WMAP in 2003- the results obtained until the moment have not allowed to observe with such accuracy the cosmic of microwaves –a fossil radiation from the first stages of the Universe- that will allow to get to know how the Cosmos was originally, what it is made of and how it has evolved. However Planck, that was conceived more than ten years ago, is ready to take on this objective as, according to Battaner, “it is ten times more sensitive than its predecessors, doubles their frequency range and has three times more resolution”.

The satellite, that will land 1.5 million kilometres from Earth and in which design have taken part France, Germany, England, Denmark and Spain between others, ill take twice images of the complete sky, an information that will make it possible to get to know in detail the formation, structure and role of the first cosmic objects such as galaxies or stars.

A window to the past

But, how can a satellite observe how the Cosmos was fourteen million years ago? The professor of the UGR [http://www.ugr.es] explains this fact mentioning the distance between Earth and most space objects: “In Universe we are lucky to see what happened thousand million years ago as light takes much time to come up to us turning present into a very distant past”. “It is like if we wanted to know how has been the evolution of a man who is forty now; to see such evolution we need a photograph of how he was as a baby, and if we do not have it will not be possible to explain the changes it has suffered in time. The same happens to our Universe”, adds the researcher.

With regard to the distance the probe will be launched at, in which two Spanish teams have collaborated supervised by Rafael Rebolo of the Institute of Astrophysics of the Canaries and by Enrique Martínez of the University of Cantabria, the scientist explains that 1.5 million kilometres far we can find the point of Lagrange, “a place where the satellite keeps stable without running the risk of orbiting in a random way”.

Planck will cost more than 400 million euros and is now in its final phase. With the instruments completely finished, they still have to calibrate them to determine their functioning and initiate the phase of assembly and integration to the satellite.

According to Battaner, the integration of the team –that participates for the first time in a space mission, although they have been studying for years the formation, evolution and structure of the galaxies- and the University in the European project “is essential” as it is, “without doubt, the main space work ever developed in this line”. If the mission is finally successful we are going to discover things that “will change completely our image of the Universe from its formation and evolution to the material it is made of. That is a very important step not only for the advance of Cosmology but also for the development of science in general”, says the physician.

Antonio Marín Ruiz | alfa
Further information:
http://www.ugr.es
http://prensa.ugr.es/prensa/research/index.php
http://www.esa.int/esaCP/SEMWDL0XDYD_Spain_1.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>