Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST physicists boost 'entanglement' of atom pairs

20.10.2006
Nondestructive method may be useful in quantum computing and communications

Physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have taken a significant step toward transforming entanglement--an atomic-scale phenomenon described by Albert Einstein as "spooky action at a distance"--into a practical tool. They demonstrated a method for refining entangled atom pairs (a process called purification) so they can be more useful in quantum computers and communications systems, emerging technologies that exploit the unusual rules of quantum physics for pioneering applications such as "unbreakable" data encryption.


The NIST process for "purifying" an unusual property of quantum physics called entanglement involves illuminating two pairs of beryllium ions (charged atoms) with a series of ultraviolet laser pulses. Credit: Bill Pietsch, Astronaut 3 Media Group Inc.

The NIST work, reported in the Oct. 19, 2006, issue of Nature,* marks the first time atoms have been both entangled and subsequently purified; previously, this process had been carried out only with entangled photons (particles of light). The NIST demonstration also is the first time that scientists have been able to purify particles nondestructively. Direct measurement would destroy the delicate entangled state of atom pairs; the new experiment gets around this problem by entangling two pairs of atoms and measuring only one pair.

Entanglement is a curious property of quantum physics that links the condition and behavior of two or more particles, such as atoms or photons. Entanglement can occur spontaneously when two atoms interact. For the initial interaction, the atoms have to be in close proximity, but the entanglement may persist even if they are physically moved apart. The quality of the entanglement can be degraded by many environmental factors, such as fluctuating magnetic fields, so the process and the transport of entangled particles need to be tightly controlled in technological applications. The purification process implemented at NIST can clean up or remove any distortions or "noise" regardless of the source by processing two or more noisy entangled pairs to obtain one entangled pair of higher purity.

"We demonstrated entanglement purification with relatively high success rates in an ion trap system that could be scaled up to build quantum computers of a practical size," says Dietrich Leibfried, an author of the paper and designer of the experiment. "It's a more complicated procedure than anything we've demonstrated before, and it will be useful in many contexts once we improve our purification procedures."

The NIST team used ultraviolet lasers to entangle two pairs of beryllium ions (electrically charged atoms) in an electromagnetic trap. A similar process was used to cross-entangle the entangled pairs--that is, to entangle each member of the first pair with its counterpart in the second pair. Then the first pair of ions was measured, and the results were used as an indication of whether the second pair (unmeasured, and thus with its quantum state intact) was entangled with higher purity. Additional tests were performed to verify that the quality of the entanglement had indeed improved.

The reported purification rate is a record (although the entangled state is not yet pure enough for use in a working computer or other device) with more than one success for every three attempts, compared to one in a million in the photon experiments. Theoretically, the NIST process could be enhanced and then repeated as many times as necessary to create a stream of near-perfectly entangled pairs in a computer or network. The NIST team's continuing research aims to substantially improve the purification operations through, for example, improved control of magnetic fields and laser intensity.

The same NIST group previously has demonstrated at a rudimentary level all the basic building blocks for a quantum computer, including key processes such as error correction and, most recently, a mass-producible ion trap. Ions are among the most promising of a dozen or so candidates for quantum bits (qubits) to store, manipulate, and transport quantum information.

Quantum computers, if they can be built, could break today's best public-key encryption systems, used to protect commercial communications. Quantum communications systems, if well designed, provide a new approach to "unbreakable" encryption to keep messages secret. Quantum computers also potentially could be used to optimize complex systems such as airline schedules, accelerate database searching, and develop novel products such as fraud-proof digital signatures.

Entanglement could have many uses in large quantum computers and networks. For example, it is required for "teleportation" of information (www.nist.gov/public_affairs/releases/teleportation.htm), a process that could be used to rapidly transfer data between separate locations in quantum computer, or to detect and correct minor operational errors (www.nist.gov/public_affairs/releases/quantum_computers.htm). Entangled photons are used in various forms of quantum cryptography, and are the clear choice for long-distance communication.

Purification is crucial because particles can be entangled initially only when they are close together, and the link degrades as the particles are moved apart. The NIST process could be used, for example, to purify entangled ions before transfer of information to photons in large networks. Most long-distance quantum communication schemes require data transfer from storage qubits to transport qubits. "If someone comes up with an interface for efficiently transferring information from ions to photons, then ions could be used for purification and photons for transport," Leibfried says.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/releases/teleportation.htm
http://www.nist.gov/public_affairs/releases/quantum_computers.htm

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>