Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean fusion energy: HiPER is on the roadmap

20.10.2006
The roadmap outlining opportunities for European science was published on Thursday 19 October.

The result of two years intensive work involving over 1000 top-level scientists, the European Strategy Forum on Research Infrastructures (ESFRI) roadmap lists 35 opportunities for major science facilities over the next 20 years.

The HiPER laser project is a key opportunity being sponsored by CCLRC within this roadmap. Its purpose is to demonstrate a high technology solution for a long-term supply of environmentally clean energy.

The European High Power laser Energy Research facility, HiPER, will be designed to investigate the newest concept for efficient generation of power from fusion – the power of the Sun. A demonstration that energy can be produced from laser driven fusion is already due in the period 2010-2012, initially in the USA and subsequently in France. HiPER has been designed to move from this scientific proof of concept to a point where a demonstration commercial power plant is feasible, using a new technique known as ‘fast ignition’.

A consortium of over 50 senior laser and plasma scientists from nine countries have worked over the past two years to prepare the conceptual design of HiPER. The consortium will now direct their efforts to preparing the case for obtaining preparatory design funding as part of the European Commission’s response to the ESFRI roadmap. The design stage is anticipated to last three years, preparing the case for construction of this €800M facility. Whilst the future location is yet to be determined, the UK is a potential host, as part of a wider drive to take a leading position in high profile science with strong economic impact.

Whilst the pursuit of a future clean energy source is the principal goal of HiPER, the capability offered by a state-of-the-art laser has not escaped the wider scientific community. Proposals to make use of HiPER are being incorporated into the design, covering fields as diverse as extreme material science, astrophysics in the laboratory, miniaturised particle accelerators, and a wide array of fundamental physics studies.

Further details on the HiPER project can be found at http://www.hiperlaser.eu
Further details on the ESFRI roadmap can be found at http://cordis.europa.eu/esfri/

Natalie Bealing | alfa
Further information:
http://www.cclrc.ac.uk
http://www.hiperlaser.eu
http://cordis.europa.eu/esfri/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>