Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Weather Report: Day and Night Temps Measured on an Extrasolar Planet

13.10.2006
For the first time, astronomers have measured the day and night temperatures of a planet outside our solar system. The team,* which includes Sara Seager of Carnegie’s Department of Terrestrial Magnetism, revealed that a giant Jupiter-like gas planet orbiting very close to its star is blisteringly hot on one side, and frigid on the other.

The finding, made using NASA's Spitzer Space Telescope, represents the first time that any kind of variation has been seen across the surface of a planet outside our solar system. Previous studies of such planets—known to astronomers as “extrasolar” planets—have described whole-globe traits such as size and mass.

The results appear online today in Science Express, and will also be presented at the 38th meeting of the Division for Planetary Sciences of the American Astronomical Society in Pasadena, California.

“This observation completely changes our thinking about hot gas giant exoplanets,” Seager said. “Most astronomers expected them to be more uniformly heated, much like Jupiter. But this planet clearly has a hot side and a cool side.”

The gas giant planet, named Upsilon Andromeda b, is a so-called "hot-Jupiter" that circles closely around its scorching star every 4.6 days. Seager and her colleagues determined that the temperature variation between the planet’s light side and its dark side is about 2,550 degrees Fahrenheit.

"This planet has a giant hot spot in the hemisphere that faces the star," said lead author Joe Harrington of the University of Central Florida, Orlando. "The temperature difference between the day and night sides tells about how energy flows in the planet's atmosphere. Essentially, we're studying weather on an exotic planet."

The team believes that the planet is "tidally locked" to its star, meaning that the planet rotates slowly enough that the same side always faces its star—much like our tidally locked moon never reveals its "dark side" to the Earth. However, since the planet is made of gas, not rock, its outer atmosphere could move faster than its locked interior.

The extreme temperature difference between the two sides could mean that the atmosphere of Upsilon Andromeda b absorbs and re-radiates sunlight rapidly, allowing the circling gases to quickly cool off as they move from light side to dark side. Jupiter, on the other hand, maintains an even temperature all around.

"If you were moving across the planet from the night side to day side, the temperature jump would be equivalent to leaping into a volcano," said the project's principal investigator, Brad Hansen of the University of California, Los Angeles.

The team used Spitzer’s heat-seeking infrared eyes to periodically stare at the Upsilon Andromeda planetary system over a period of about five days. They found that the system's light dimmed and brightened in time with Upsilon Andromeda b's orbit; this change in observed light, or heat, is the result of the planet showing its different faces as it travels around the star. When the planet's sunlit side was in Earth's view, Spitzer detected more light from the system; when its dark side was facing us, Spitzer picked up less light. The technique takes advantage of the fact that planets stand out better relative to their stars when viewed in infrared light.

"This is a spectacular result," said Michael Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "When we designed Spitzer years ago, we did not anticipate that it would be revolutionizing extrasolar-planet science."

Upsilon Andromeda b was discovered in 1996 around the star Upsilon Andromeda, which is 40 light-years away and visible to the naked eye at night in the constellation Andromeda. The star is circled by two other known planets, both located farther out than Upsilon Andromeda b. The plane of this planetary system is tilted relative to our solar system, such that the planets are always in Earth's line of sight.

Dr. Sara Seager | EurekAlert!
Further information:
http://www.spitzer.caltech.edu/spitzer
http://www.carnegieinstitution.org

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>