Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Ideas for X-Ray Lasers

11.10.2006
At the 10th International Conference on X-Ray Lasers in Berlin, organized by the Max Born Institute (MBI), a novel design for X-ray lasers was the leading topic of many presentations The organizers themselves have proposed a project of such an X-Ray laser pumped by a high repetition rate Diode Pumped Solid State Laser (DPSSL) being under development.

Scientists world-wide are working on lasers with shorter and shorter wavelengths. The shorter the wavelength applied, the smaller the structures one can see, investigate and produce.

"For the first time we are able to set up such a short-wave emitting laser”, says MBI-scientist Dr. Peter Viktor Nickles. Up to now, most laboratories world-wide use solid-state lasers to deliver to the X-ray lasers a necessary energy, a process called pumping. However, these conventional pumping lasers are not stable enough to enable clear conclusions from a limited number of shots. “Particularly in sequence of measurements, averaging of the signals will smear the results”, says Nickles. Diode-lasers are far more stable and thus more suitable for the pumping process. They lead to more exact results and also allow high repetition rates, i.e. fast repeating pulses.

“Our concept to develop an X-ray laser pumped by a diode pumped Yb:YAG laser is completely new”, says Nickles. At the beginning MBI aims at repetition rates up to 100 pulses per second (100 Hz). This is only possible with diode pumped lasers. The new X-ray laser should be ready for use by the end of 2007. “This marks a milestone in the development of X-ray lasers”, says Nickles. The Investitionsbank Berlin supports the MBI project through a special subsidizing programme for the promotion of research, innovation and technology (the German abbreviation is ProFIT), which is embbeded in the EU EFRE programme.

The neighbouring Ferdinand Braun Institute (FBH) is also involved in this research project. FBH provides the special diode-lasers. These light-sources are based on new designs of laminar structures (epitaxy) and lateral structuring. The highly brilliant and efficient laser- diodes emit at wavelengths about 935 nanometers and allow simple and reliable beam formation at low production costs.

One of the great advantages of such an X-ray laser is its comparatively small size. Furthermore, the diode-based pumping lasers require less energy than solid-state pumping lasers. A couple of desks of standard size would be sufficient to build such an X-ray laser. Thus, an intense short-wave light-source can easily be moved – a feature that is especially interesting for industrial applications.

Nickles comments: “Their flexibility and easy transport make them an interesting source of short-wave pulses complementary to short-wave free electrons lasers (FEL) which work as individual large-scale facilities based on particle accelerators.”

“Table-top X-ray lasers were an important topic of the 10th International Conference on X- Ray Lasers (ICXRL) in Berlin-Adlershof”, says Nickles who, together with his colleagues, has organized the traditional meeting. „Some well-known parameters were improved by colleagues”, reports Nickles on other talks at the conference. One group documented that an X-ray laser was transferred from one laboratory to another and successfully assembled again. More than hundred active participants as well as numerous guests from altogether fourteen countries had come to Berlin.

Josef Zens | alfa
Further information:
http://www.fv-berlin.de

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>