Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phase diagram of water revised by Sandia researchers

05.10.2006
'Metallic water' alters characteristics of Neptune and impacts other physics

Supercomputer simulations by two Sandia researchers have significantly altered the theoretical diagram universally used by scientists to understand the characteristics of water at extreme temperatures and pressures.

The new computational model also expands the known range of water's electrical conductivity.

The Sandia theoretical work showed that phase boundaries for "metallic water" - water with its electrons able to migrate like a metal's - should be lowered from 7,000 to 4,000 kelvin and from 250 to 100 gigapascals.

(A phase boundary describes conditions at which materials change state - think water changing to steam or ice, or in the present instance, water - in its pure state an electrical insulator - becoming a conductor.)

The lowered boundary is sure to revise astronomers' calculations of the strength of the magnetic cores of gas-giant planets like Neptune. Because the planet's temperatures and pressures lie partly in the revised sector, its electrically conducting water probably contributes to its magnetic field, formerly thought to be generated only by the planet's core.

The calculations agree with experimental measurements in research led by Peter Celliers of Lawrence Livermore National Laboratory.

Sandia is a National Nuclear Security Administration laboratory.

How the work came about

Surprising results were not the intent of Sandia co-investigators Thomas Mattsson and Mike Desjarlais.

"We were trying to understand conditions at [a powerful Sandia accelerator known as] Z," says Mattsson, a theoretical physicist, "but the problems are so advanced that they hopscotched to another branch of science."

In July 2007, Z is undergoing an extensive renovation that will increase the machine's pulse from 20 to 26 million amps - a 30 percent rise. The question to researchers: How will water behave, subjected to these more extreme conditions?

The power Z emits in X-rays when it fires is equivalent to many times the entire world's generation of electricity - but only for a few nanoseconds. The machine creates high temperatures and pressures in water because of the 20-million-amp electrical pulses it sends through a row of water switches. First, the water acts as an insulator, restraining the incoming electric charge. Then, overcome by the buildup, water transmits the pulse, shortening it from microseconds to approximately 100 nanoseconds. This compression in time is a key element of what makes the Z accelerator so powerful.

It is known that so much electricity passing through water vaporizes it, causing surrounding water pressures to rise as the shock wave from vaporization travels outward. But how much is the increase? How big a cavity does the ionized region form to transmit what amounts to a giant spark? And what are the best sizes for these channels, and for the switches themselves, to optimize the transmission of electrical pulses in future upgrades?

"The concern was that ZR [Z Refurbishment] or its successors might go beyond the ability of a water switch to function as designed and carry the required current," says Keith Matzen, director of Sandia's Pulsed Power Sciences Center. "More efficient, larger machines may run into a limit and their switches not meet design requirements. So the question is, how does a water switch really work from first principles?"

One aspect of this knowledge is to model water to get a better understanding of its behavior under these extreme conditions, he says.

Mattsson and Desjarlais first found the standard water-phase diagram out of whack when they ran an advanced quantum molecular simulation program on Sandia's Thunderbird supercomputer that included "warm" electrons instead of unrealistic cold ones, says Desjarlais.

The molecular modeling code VASP (Vienna Ab-initio Simulation Package), based on density functional theory (DFT), was written in Austria. Desjarlais extended it to model electrical conductivity and Mattsson developed a model for ionic conductivity based on calculations of hydrogen diffusion. An accurate description of water requires this combined treatment of electronic and ionic conductivity.

The adaptation of VASP to high-energy-density physics (HEDP) work at Sandia was motivated by earlier experimental measurements of the conductivity of exploding wires by Alan DeSilva at the University of Maryland. DeSilva found a considerable disparity between his data and theoretical models of materials in the region of phase space called warm dense matter. Desjarlais' early VASP conductivity calculations immediately resolved the discrepancy. In recent years, a team of Sandia researchers has been extending one of Sandia's own DFT codes (Socorro) to go beyond the capabilities of VASP for HEDP applications.

"Mike [Desjarlais] was the first to pioneer this capability for warm dense matter six years ago," says Sandia manager Tom Mehlhorn, "and Mattsson has come on to be a near-perfect complement as the work enters more complex areas."

As it turns out, the newly discovered regime will not adversely affect Sandia's water switches on ZR. But water switches not yet designed for future upgrades may require the more accurate understanding of the phases of water discovered by the Sandia researchers.

Because of Z's success in provoking fusion neutrons from deuterium pellets, it is thought of as a possible (if dark-horse) contender in the race for high-yield controlled nuclear fusion, which would provide essentially unlimited power to humanity.

Z is immediately useful for US defense purposes - data from its firing is used to validate physics models in computer simulations that are used to certify the safety and reliability of the US nuclear weapons stockpile.

The work on water phases was initially published July 7 in Physical Review Letters and most recently reported at the 12th International Workshop on the Physics of Non-Ideal Plasmas, held in Darmstadt, Germany.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>