Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating light with a tiny needle

04.10.2006
Using the tip of an Atomic Force Microscope (AFM), it is possible to map the wave pattern of light, trapped in a so called optical resonator, with unprecedented precision.

Apart from that, the AFM is also capable of playing with the light, to optimize the performance of the resonator. If the optical crystal doesn’t work at the correct colour of light, for example, this mechanical correction works out well. It is even possible to build a mechanical-optical switch in this way. Wico Hopman, a PhD-researcher within the Integrated Optical MicroSystems group of the MESA+ Institute for Nanotechnology, published his results in the online journal Optics Express.

With the AFM-tip, about ten nanometer in size, Hopman is able to manipulate light that is locked up in an optical crystal; a sort of cage in which light is trapped. An optical crystal has a pattern of holes at which all light reflects and comes together in a cavity where no holes are present. In this cavity the light resonates at a specific colour. This makes optical crystal highly suitable to act as selective filters for certain colours of light. Whenever Hopman scans the cavity with the AFM-tip, the light ‘feels’ the presence of the needle, the colour is influenced lightly and the filter is going to do its work for the new colour. In this very precise way, Hopman can demonstrate the way the light is divided in the cavity.

Hot spots

Thanks to this extremely high precision, Hopman can locate the ‘hot spots’ at which he can manipulate the light best. Within these hot spots, the colour can be modified in the best way and also the selectivity of the filter is manipulated: how well will it distinguish one colour from another? If the crystal has small defects, it may not perform optimally, and the AFM-method is capable of compensating for these defects. Building a fast optical-mechanical on/off switch is possible in this way to. The distance the needle has to travel is just some nanometers, this can be done in nanoseconds time.

In this research project, Hopman has closely collaborated with the Biophysical Engineering Group, of the University of Twente as well. This group investigates the properties of fluorescent proteins. Manipulating the light properties of these proteins within an optical crystal could be an interesting option, which is to be investigated into more detail.

The full article can be found on the website of Optics Express, www.opticsexpress.org

Wiebe van der Veen | alfa
Further information:
http://www.opticsexpress.org
http://www.utwente.nl/nieuws/pers/en/cont_06-041_en.doc/

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>