Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bose-Einstein condensation of polaritons brings quantum effects in out of the cold

28.09.2006
New experimental research shows that half-matter, half-light quasi-particles called polaritons show compelling evidence of Bose-Einstein condensation at the relatively high temperature of 19 degrees Kelvin.

The creation of a polariton Bose-Einstein condensate in the solid state provides scientists with a unique opportunity to better understand and possibly exploit the quantum effects that occur in these very special conditions.


Images of the energy distribution of polaritons as a function of the excitation density. From left to right, below threshold for condensation, at threshold and above threshold. Front row, speed distributions, the speed increases from the center to the edges. Rear row, dispersion of polaritons, with their distribution.

Researchers at EPFL (Ecole Polytechnique Federale de Lausanne), collaborating with colleagues at University of Grenoble, Cambridge, Oxford and MIT, have reported the observation of polaritons displaying the defining features of Bose Einstein condensation --a macroscopically ordered state, long-range spatial coherence and polarization – for the first time in solid state. Their results appear in an article in the September 28 issue of the journal Nature.

Bose-Einstein condensates are sometimes referred to as a “fifth state of matter”, a special phase in which all the particles share the same quantum state. This phase was predicted by Satyendranath Bose and Albert Einstein in 1924. Getting atoms cold enough to provide experimental proof of its existence took seventy more years, and the first successful experiments using Rubidium atoms won Eric Cornell, Wolfgang Ketterle and Carl Wieman the 2001 Nobel prize in physics. Cooled to within a hair of absolute zero, the atoms in dilute clouds of bosonic gases stop moving and condense, not into a liquid, but into a new phase called a condensate, in which the atoms all share the same quantum state. Like photons in a laser, the particles are coherent, behaving en masse like a “super-particle.”

The possibility of a phase change into a Bose-Einstein-like condensate theoretically applies for all bosonic particles, including electron-hole pairs called excitons and half exciton, half photon quasi-particles called polaritons. Exploring Bose-Einstein condensation and its intriguing quantum effects using these quasi-particles is particularly interesting because their light mass makes things much easier. A polariton is a billion times lighter than a Rubidium atom, and 10,000 times lighter than an electron. This means that polaritons can transform into a Bose-Einstein condensate at a much higher temperature than alkali gases. Some of the possibilities that have been suggested for applications of the quantum effects of the Bose-Einstein phase -- quantum computing, quantum clocks or atomic or lasers that use matter instead of light – are only realistically conceivable if these condensates can be achieved at room temperature, or at least temperatures that can be reached using standard cryogenic techniques.

Signatures of exciton and polariton coherence have been previously observed in semiconductor microcavities, but conclusive proof, such as evidence of polarization and long range particle coherence, has remained elusive because the particles only live a trillionth of a second.

The experiments of the EPFL-led team provide the first convincing evidence of a Bose-Einstein like condensate in the solid state. The researchers confined photons in a semiconductor microcavity containing a large number of quantum wells, and then used a laser to excite the semiconductor, generating polaritons. At a critical density, at the easily attainable temperature of 19 degrees Kelvin (about -254 Celsius), the polaritons showed evidence of spontaneous coalescence into a single coherent ground state. The classic phase transition characteristics -- macroscopic polarization and spatial coherence across the entire condensate -- are clearly seen here, and for the first time in solid state.

According to Professor Benoit Deveaud, leader of the research team, condensates at even higher temperatures could perhaps be achieved using other semiconductor materials.

“The magical properties of superfluidity, where matter flows with zero friction, and superconductivity, where a current flows with zero resistance, are quantum effects, and in the Bose-Einstein condensate they are directly brought to our perception,” notes Deveaud. “It is exciting to envision exploring this magic without having to use an incredibly complex machine to get to temperatures just above absolute zero.”

What practical applications will this lead to? “We are still exploring the basic physics of this phenomenon,” says Deveaud. “But just achieving this phase in the solid state is exciting. In the mid 1900s, transistors replaced vacuum lamps, and now most useful devices are made in the solid state,” he explains. “Polaritons, although made with a photon, are really quasi-particles in the solid. It is likely that they can be manipulated much as electrons are – an advance that has led to incredible new technologies such as the CCD chips in digital cameras.”

Mary Parlange | alfa
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>