Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cool way to build the world's fastest computer

25.09.2006
A University of Sussex scientist and his American colleagues have solved a mystery that limits the performance of the world's fastest computer, the quantum computer, after making an unexpected discovery.

Quantum technology is set to revolutionise our lives. Extremely fast computers that are based on this technology could solve mysteries in the understanding of our world, such as understanding chemical reactions and ultimately creating new medicines. The same technology already provides ultra-secure communications systems, and could be used in code-breaking to reveal answers to highly-complex questions, such as how the universe was created.

In the last few years ground breaking discoveries have been made showing great promise in a particular technology in which atoms are trapped and manipulated using laser and electric fields. These "ion traps", which are devices that trap single charged atoms (ions), can be used to process and transport vast amounts of information.

But while scientists have the knowledge of what a quantum computer could do, the challenge so far has been in how to build one on a small enough scale. An ion trap quantum computer would require millions of ion traps, resulting in a machine so large that it would fill a laboratory. The smaller the ion trap, the larger is the detrimental effect of "noise". Noise is the random motion of the atom created by electric fields that may prevent such a computer from working.

Now Dr Winfried Hensinger, lecturer in atomic molecular and optical physics at the University of Sussex, has worked with colleagues at the University of Michigan to successfully build a new type of ion trap. Louis Deslauriers, a graduate student at the University of Michigan (now a postdoctoral fellow at Stanford University) spearheaded the effort to build an ion trap that can change its size. Using this complicated experimental device, the scientists could measure exactly how the noise is related to the size of the ion trap and more importantly answer the question how small an ion trap computer could be made. In the process the team also made the world's smallest ion trap - just 0.023 mms from electrode to ion, equivalent to the width of a single hair.

In order to understand the mechanism behind such noise, the team tried cooling the electrodes that form the ion trap on either side of the ion to -120 degs C and made a surprising discovery. Most of the noise actually disappeared. This could mean that an ion trap quantum computer could be made much smaller than previously expected simply by cooling the electrodes.

Dr Hensinger said: "This is a very exciting discovery, and means that we now have a very realistic chance to develop the world's first large-scale quantum computer."

The latest successful research, which is published in Physical Review Letters (September 8, 2006), builds on previous work by Dr Hensinger and his colleagues on the chip fabrication of ion trap arrays and the microscopic manipulation of atoms. The research was carried out in the laboratory of Prof. Christopher Monroe at the University of Michigan.

Dr Hensinger, who heads the Ion Quantum Technology Group at the University of Sussex, says: "Quantum computer technology is likely to unlock some of science's biggest secrets, not only by processing information hundreds of times faster than current computers, but also by giving more accurate results. It is a very exciting and dynamic area of research and research at the University of Sussex will play an important role."

Jacqui Bealing | alfa
Further information:
http://www.sussex.ac.uk

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>