Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mammoth CMS magnet reaches full-field at CERN

21.09.2006
Tests show CMS detector will be ready for data

The world’s largest superconducting solenoid magnet has reached full field. Weighing in at over 10,000 tonnes, the CMS experiment’s magnet is built around a 6-metre diameter, 13-metre long superconducting solenoid coil. It generates a field of 4 teslas, some 100,000 times higher than that of the Earth, and stores 2.5 gigajoules of energy, sufficient to melt 18 tonnes of gold.

CMS is one of the experiments preparing to take data at CERN ’s Large Hadron Collider (LHC) particle accelerator, which is scheduled to switch on in November 2007. CMS physicists will address some of nature’s most fundamental questions, such as why particles have mass and what the so-far unexplored 96% of the Universe is made of. Some 2000 scientists from 155 institutes in 36 countries are working together to build the CMS particle detector, which is currently undergoing tests prior to installation in an experimental hall 100 metres underground. These tests are being carried out with a full slice of the CMS detector, including all its subsystems. “After recording 30 million tracks from cosmic ray particles,” said CMS spokesman Michel Della Negra, “all systems are working very well, and we’re looking forward to first collisions in the LHC next year.”

The CMS magnet is a marvel of modern technology. When it was designed in the early 1990s, it was beyond the state-of-the art at the time. What makes it remarkable is not just its high magnetic field, but also the fact that the field is maintained with high uniformity over such a large volume. New techniques have had to be developed, allowing the solenoid coil to be more compact than 1990s technology could have achieved.

CMS magnet construction was approved in 1996, and began in earnest in 1998. By 2002, fabrication of the superconducting wire was complete. Winding the cable to produce the solenoid coil began in 2000 and took five years to achieve. By the end of 2005, the solenoid was ready for testing, and in February this year, it was cooled down to its operating temperature of around -269 degrees Celsius. Following the insertion of particle detectors, testing started at the end of July.

The magnet is a common project to which all of CMS’s 155 institutes have contributed financially. Major innovative and technical contributions have been made by the French Atomic Energy Commission in Saclay (CEA) for the original concept and general engineering, CERN for the project coordination, all ancillaries, and the magnet yoke and assembly, the Swiss Federal Institute of Technology (ETH Zurich) for the development and production of the compound superconductor and organization of major magnet procurement including the barrel yoke, the US Department of Energy's Fermi National Accelerator Laboratory near Chicago for the superconducting wire and field mapping, the Italian National Institute of Nuclear Physics (INFN) in Genoa for the design and execution of the winding operation, the Russian Institute for Theoretical and Experimental Physics (ITEP) in Moscow and the University of Wisconsin for the endcap yoke.

Sophie Sanchis | alfa
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>